首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have computed the surface Green's function for linear force-free magnetic fields, where × B = B and is a constant, for application to low coronal levels of the solar atmosphere. Boundary conditions are imposed on the normal component of B on two parallel planes which delineate the force-free volume. This procedure ensures that the magnetic field energy remains bounded, and that the field lines have a smooth behavior. A simple bipolar source distribution is treated and representative field line tracings are shown.  相似文献   

2.
    
Using the boundary element method (BEM) for constant-, force-free fields, the vector magnetic field distributions in the chromosphere of a flare-productive active region. AR 6659 in June 1991, are obtained by extrapolating from the observed vector magnetograms at the photosphere. The calculated transverse magnetic fields skew highly from the photosphere to the chromosphere in the following positive polarity sunspot whereas they skew only slightly in the main preceding sunspot. This suggests that more abundant energy was stored in the former area causing flares. Those results demostrate the validity of the BEM solution and the associations between the force-free magnetic field and the structure of the AR 6659 region. It shows that the features of the active region can be revealed by the constant- force-free magnetic field approximation.  相似文献   

3.
The evolution of coronal and chromospheric structures is examined together with magnetograms for the 1B flare of January 19, 1972. Soft X-ray and EUV studies are based on the OSO-7 data. The H filtergrams and magnetograms came from the Sacramento Peak Observatory. Theoretical force-free magnetic field configurations are compared with structures seen in the soft X-ray, EUV and H images. Until the flare, two prominent spots were connected by a continuous dark filament and their overlying coronal structure underwent an expansion at the sunspot separation rate of 0.1 km s–1. On January 19, the flare occurred as new magnetic fields emerged at 1019 Mx h–1 beneath the filament, which untwisted and erupted as the flare began. The pre-flare coronal emissions remained unchanged during the flare except for the temporary addition of a localized enhancement that started 5 min after flare onset. EUV lines normally emitted in the upper transition region displayed a sudden enhancement coinciding in time and location with a bright H point, which is believed to be near the flare trigger or onset point. The EUV flash and the initial H brightening, both of which occurred near the center of the activated filament, were followed by a second EUV enhancement at the end of the filament. The complete disruption of the filament was accompanied by a third EUV enhancement and a rapid rise in the soft X-ray emission spatially coincident with the disappearing filament. From the change of magnetic field inferred from H filtergrams and from force-free field calculations, the energy available for the flare is estimated at approximately 1031 erg. Apparently, changes in the overlying coronal magnetic field were not required to provide the flare energy. Rather, it is suggested that the flare actually started in the twisted filament where it was compressed by emerging fields. Clearly, the flare started below the corona, and it appears that it derived its energy from the magnetic fields in or near the filament.NCAR is sponsored by NSF.  相似文献   

4.
On practical representation of magnetic field   总被引:2,自引:0,他引:2  
Various manners of determination of a magnetic field are reviewed briefly from the standpoint of practicality and uniqueness. Then a practical representation of magnetic fields in terms of a class of force-free magnetic field is described. The proposed scheme is based on the physical consideration that in the chromosphere and lower corona a quasistatic magnetic field must be nearly force-free and that for the class of force-free magnetic field, i.e., ×B=B with = constant, the magnetic field can be determined uniquely from the observed distribution of the vertical component of a magnetic field. The applicability of the representation is demonstrated by examples and the limitations are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
Numerical calculations of two-dimensional force-free fields as models of solar active regions are presented. For a given toroidal component of the photospheric magnetic field two branches of solutions are numerically obtained which merge at the critical point of maximum allowed toroidal magnetic field. Depending on boundary conditions magnetic islands may or may not form. The results are discussed with respect to their relevance to the flare process.  相似文献   

6.
Helical structures are generally associated with many eruptive solar prominences. Thus, study of their evolution in the solar atmosphere assumes importance. We present a study of a flare-associated erupting prominence of March 11, 1979, with conspicuous helically twisted structure, observed in H line center. We have attempted to understand the role played by twisted force-free magnetic fields in this event. In the analysis, we have assumed that the helical structures visible in H outline the field lines in which prominence tubes are embedded. Untwisting of observed prominence tubes and later, formation of open prominence structures provide evidence of restructuring of the magnetic field configuration over the active region during the course of prominence eruption. Temporal evolution of the force-free parameter is obtained for two main prominence tubes observed to be intertwined in a rope-like structure. Axial electric currents associated with the prominence tubes are estimated to be of the order of 1011 A which decreased with time. Correspondingly, it is estimated that the rate of energy release was 1028 erg s–1 during the prominence eruption.  相似文献   

7.
The structure of rotating magnetic polytropes is considered in Roche approximation. Investigation of the influence of poloidal as well as toroidal magnetic fields on the conditions of the beginning of matter outflow due to rotational instability is carried out. The influence of the turbulent convection and twisting of magnetic force lines on the time of smoothing of differential rotation is considered. The estimate of the magneto-turbulence energy generated by differential rotation is presented. Both maximum possible energy output and duration of the quasi-statical evolution phase up to the appearance of hydrodynamic instability due to the effects of General Relativity are calculated for supermassive magnetic polytropes of index three with uniform or differential rotation. The radiusmass relation is obtained for supermassive differentially-rotating magnetic polytropes referring to the longest part of the quasi-statistical evolution stage; some consequences are pointed out, including the period-luminosity relation.The evolution of the considered models of supermassive rotating magnetic polytropes with different character of rotation and different geometry of a magnetic field is discussed.The results obtained are summarized in the last section.Receipt delayed by postal strike in Great Britain.  相似文献   

8.
The main theoretical studies of the process involved in solar flares have been made in the two-dimensional approximation. However, the preliminary studies made with three field components suggest that reconnection could take place in the separatrices, the separator (intersection of separatrices) being a privileged location for this process. As a consequence the sites of flare kernels must be located on the intersections of the separatrices with the photosphere. Therefore, in order to understand the role of interacting large-scale structures in solar flares, we have analysed the topology of three-dimensional potential and linear force-free fields. The magnetic field has been modelled by a distribution of charges or dipoles located below the photosphere. This modelling permits us to define the field connectivity by the charges or the dipoles at both ends of every field line.We found that the appearance of a separator above the photosphere is more likely when a parasitic bipole emerges outside the axis that joins the main polarities and when the field lines are characteristic of a field created by dipoles. The separatrices derived in the potential and force-free hypothesis have different shapes. However, in the strong field regions where flares usually occur, the separatrices of the potential and force-free field models become closer. This property makes possible the use of the potential field, as a first estimate, for computing the location in the photosphere of the separatrices and for comparing this location with the position of observed H kernels. Displacements of the separatrices of a force-free field result from modifications of the free energy of the field. Then force-free fields have the further capability of predicting the kernel displacement. In all cases a configuration suitable for prominence support is found above the separator.  相似文献   

9.
Yan Yihua  Yu Qing  Kang Feng 《Solar physics》1991,136(1):195-198
A force-free magnetic field model with constant is established, and a boundary element method is proposed to solve the problem. The procedure ensures a unique solution as well as a finite magnetic energy content. The proposed formulation is effective in solving magnetic fields above the solar surface, and the validity of our procedure is demonstrated by satisfactory agreement between calculated and observed magnetograms.  相似文献   

10.
It is shown that, at neutral points of force-free magnetic fields, the electric current density must vanish. This property is independent of whether the neutral points are isolated or (e.g.) fill lines or surfaces. One implication is the fact that in a cold pressureless plasma the formation of neutral current sheets cannot be adiabatically slow. The field-line topology in the neighbourhood of neutral points is discussed. At neutral points of force-free magnetic fields in general three constant- surfaces, defined by the equation ×B=B, with the same value of intersect orthogonally. If, during a time-development, the magnetic field gradient matrix B i/x j becomes singular at a neutral point, the field topology can change qualitatively — in general connected with the merger of two or more neutral points into one and/or the splitting up of one neutral point into several others. This can be interpreted as implying the transition from a quasi-static evolution to a dynamical state in which magnetic energy is released.  相似文献   

11.
Su Qing-Rui 《Solar physics》1982,75(1-2):229-236
In this paper, we extend B. C. Low's study on nonlinear force-free magnetic fields. Based on Low's mathematical method, a revised boundary-value problem of the two-dimensional nonlinear force-free magnetic field is solved analytically. The solution shows that higher magnetic loops evolve towards preflare loops when the gradient of longitudinal magnetic field at the photospheric level and the angle (shear) included between the magnetic field line and magnetic neutral line increase with time. The density, temperature and the current density are higher in the preflare loops than in the high-lying magnetic loops. We believe it is the loops that provide conditions for the eruption of the flare.The original has been published in the Acta Astronomica Sinica 21 (1980), 152, in Chinese. The present paper completes the discussion and revises some of the preliminary results.  相似文献   

12.
Wiegelmann  T.  Neukirch  T. 《Solar physics》2002,208(2):233-251
We present a method to include stereoscopic information about the three-dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force-free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force-free fields for simplicity. The method uses the line-of-sight magnetic field on the photosphere as observational input. The value of is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force-free solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.  相似文献   

13.
In preceding papers of this series (Kopal, 1968; 1969) the Eulerian equations have been set up which govern the precession and nutation of self-gravitating fluid globes of arbitrary structures in inertial coordinates (space-axes) as well as with respect to the rotating body axes; with due account being taken of the effects arising from equilibrium as well as dynamical tides.In Section 1 of the present paper, the explicit form of these equations is recapitulated for subsequent solations. Section 2 contains then a detailed discussion of the coplanar case (in which the equation of the rotating configuration and the plane of its orbit coincide with the invariable plane of the system); and small fluctuations in the angular velocity of axial rotation arising from the tidal breathing in eccentric binary systems are investigated.In Section 3, we consider the angular velocity of rotation about theZ-axis to be constant, but allow for finite inclination of the equator to the orbital plane. The differential equations governing such a problem are set up exactly in terms of the time-dependent Eulerian angles and , and their coefficients averaged over a cycle. In Section 4, these equations are linearized by the assumption that the inclinations of the equator and the orbit to the invariable plane of the system are small enough for their squares to be negligible; and the equations of motion reduced to their canonical form.The solution of these equations — giving the periods of precession and nutation of rotating components of close binary systems, as well as the rate of nodal regression which is synchronised with precession — are expressed in terms of the physical properties of the respective system and of its constituent components; while the concluding Section 6 contains a discussion of the results, in which the differences between the precession and nutation of rigid and fluid bodies are pointed out.  相似文献   

14.
Analytic and numerical results are presented for the growth rate of Langmuir waves due to a loss-cone distribution of energetic electrons. The effect of the magnetic field on the wave-particle interaction is ignored, and the resonance condition is described in terms of a resonance hyperboloid in momentum space. The collisional evolution of a distribution of magnetically trapped electrons is followed numerically to show how a gap distribution develops. The growth is most favorable for an intermediate sized loss cone ( 45 °) and a gap distribution in which the mean energy of the suprathermal electrons is much larger than the thermal energy of the background electrons. It is plausible that loss-cone gap distributions do develop in the solar corona, and that they should lead to second harmonic plasma emission weakly polarized in the x-mode.  相似文献   

15.
Nakagawa  Yoshinari 《Solar physics》1997,174(1-2):21-29
A brief historical review of solar and interplanetary magnetic field modeling and analysis is presented. The modeling was initiated with the routine observation of longitudinal magnetograms and the application of current free potential magnetic fields for its interpretation. Almost simultaneously, the development of detailed H observation motivated the constant-, force-free magnetic field analysis. Subsequent development of transverse magnetograms leads not only to further refinements of the analysis and modeling but also to many physically meaningful interpretations of the observations. In this review, historical development is traced with the emphasis placed on the yet unanswered questions.  相似文献   

16.
Amari  T.  Aly  J. J.  Luciani  J. F.  Boulmezaoud  T. Z.  Mikic  Z. 《Solar physics》1997,174(1-2):129-149
We present some preliminary results on different mathematical problems encountered in attempts to reconstruct the coronal magnetic field, assumed to be in a force-free state, from its values in the photosphere. We discuss the formulations associated with these problems, and some new numerical methods that can be used to get their approximate solutions. Both the linear constant- and the nonlinear cases are considered. We also discuss the possible use of dynamical 3D MHD codes to construct approximate solutions of the equilibrium force-free equations, which are needed for testing numerical extrapolation schemes.  相似文献   

17.
Frequencies of non-radial oscillation of polytropic models of stars, belonging to spherical harmonics of ordersl=1, 2 and 3, are evaluated, in a second approximation, by a variational method. Equilibrium configurations in the presence of toroidal magnetic fields are obtained numerically without any restriction on the field strength. The value of the ratio of the specific heats, , is assumed to be equal to 5/3 and only two polytropic indeces,n=1.5 and 3.0, are considered. It is found that a polytropic star stays stable for magnetic fields considerably stronger than expected from the results obtained by the weak field perturbation methods.  相似文献   

18.
In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)?×B 0=(α#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.  相似文献   

19.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

20.
McClymont  A. N.  Jiao  L.  MikiĆ  Z. 《Solar physics》1997,174(1-2):191-218
An overview of the whole process of reconstructing the coronal magnetic field from boundary data measured at the photosphere is presented. We discuss the errors and uncertainties in the data and in the data reduction process. The problems include noise in the magnetograph measurements, uncertainties in the interpretation of polarization signals, the 180° ambiguity in the transverse field, and the fact that the photosphere is not force-free. Methods for computing the three-dimensional structure of coronal active region magnetic fields, under the force-free assumption, from these boundary data, are then discussed. The methods fall into three classes: the extrapolation technique, which seeks to integrate upwards from the photosphere using only local values at the boundary; the current-field iteration technique, which propagates currents measured at the boundary along field lines, then iteratively recomputes the magnetic field due to this current distribution; and the evolutionary technique, which simulates the evolution of the coronal field, under quasi-physical resistive magnetohydrodynamic equations, as currents injected at the boundary are driven towards the observed values. The extrapolation method is mathematically ill-posed, and must be heavily smoothed to avoid exponential divergence. It may be useful for tracing low-lying field lines, but appears incapable of reconstructing the magnetic field higher in the corona. The original formulation of the current-field iteration method had problems achieving convergence, but a recent reformulation appears promising. Evolutionary methods have been applied to several real datasets, with apparent success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号