首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of our monitoring of the semiregular variable HU Pup in the 1612, 1665, and 1667-MHz OH lines and the 22.235-GHz H2O line. The maser emission in the 1612-MHz satellite line has been detected from this source for the first time. Strong variability of the emission has been observed in all three OH lines, including the radial-velocity drift of the two most intense features. Zeeman splitting components have been found. The longitudinal magnetic field strength has been estimated to be 1.0, 1.6 and 2.7, 3.2 mG in the 1665 and 1667-MHz lines, respectively. Our OH and H2O observations have revealed fairly stable structures in the masing region and have allowed us to estimate the variability period of the maser emission (~1.5 yr). A possible model of the maser source in HU Pup is discussed.  相似文献   

2.
Masers at the ground-state OH satellite transitions near 1612 and 1720 MHz are occasionally found in star-forming regions, accompanying the dominant maser of OH at 1665 MHz. The satellite lines can then be valuable diagnostics of physical conditions in star-forming regions if we can first ascertain that all maser species truly arise from the same site. For this purpose, newly measured satellite line positions with subarcsecond accuracy are reported here, and compared with masers of main-line OH at 1665 MHz, with methanol masers at 6668 MHz, and with ultracompact H  ii regions. We confirm that most of the satellite-line OH masers that we have measured are associated with star-forming regions, but a few are not: several 1612-MHz masers are associated with late-type stars, and one 1720-MHz maser is associated with a supernova remnant. The 1720-MHz masers in star-forming regions are accounted for by a pumping scheme requiring high densities, and are distinctly different from those in supernova remnants where the favoured pumping scheme operates at much lower densities.  相似文献   

3.
We have made observations of the four hyperfine transitions of the 2Π3/2,     ground state of OH at 1612, 1665, 1667 and 1720 MHz and the related 1.6-GHz continuum emission towards NGC 6334 using the Australia Telescope Compact Array. The observations covered all the major radio continuum concentrations aligned along the axis of NGC 6334 (V, A to F). We have detected seven OH masers plus a possible faint eighth maser; two of these masers are located towards NGC 6334-A. Absorption at 1665 and 1667 MHz was detected towards almost all the continuum distribution. All transitions show non-LTE behaviour. The 1667-/1665-MHz intensity ratios range from 1.0 to 1.2, significantly less than their LTE value of 1.8. The results of the OH 'Sum Rule' suggest that this discrepancy cannot be explained solely by high optical depths. The 1612- and 1720-MHz line profiles show conjugate behaviour whereby one line is in absorption and the other in emission. In addition, the profiles commonly showed a flip from absorption to emission and vice versa, which is interpreted as a density gradient. The OH line-to-continuum distribution, optical depth and velocity trends are consistent with a bar-like shape for the molecular gas which wraps around the continuum emission.  相似文献   

4.
Using the Nançay radio telescope of Paris Observatory, France, OH 1665 and 1667 MHz masers in the western part of ON2(C) have been observed. The observed emission spectra are analyzed with a thin-disk model, and the positions and Keplerian velocities of the maser spots corresponding to the spectral peaks are obtained.  相似文献   

5.
俞志尧 《天文学报》2003,44(3):249-255
利用法国巴黎天文台的南锡射电望远镜对ON2中部以西区域OH1665和1667MHz脉泽进行观测,结合模型对中部以西区域的OH1665和1667MHz脉泽谱线频谱图进行分析和研究、利用薄盘模型,得到相应于ON2中部以西区域的OH1665和1667MHz峰的脉泽斑的位置及其Keplerian运动速度。  相似文献   

6.
Two star-forming regions Cepheus A and W75N, were searched for the 4765-MHz OH maser emission using the multi-element radio linked interferometer network (MERLIN). The excited OH emission has an arc-like structure of 40 mas in Cep A and a linear structure of size 45 mas in W75N. We also found the 1720-MHz line in Cep A and Hutawarakorn [MNRAS 330 (2002) 349] reported the 1720-MHz emission in W75N. The 1720- and 4765-MHz OH spots coincided in space within 60 mas and in velocity within 0.3 km s–1 in both targets implying that both maser transitions arise from the same region. According to the modelling by Gray [MNRAS 252 (1991) 30] the 1720/4765-MHz co-propagation requires a low density, warm environment. The masers lie at the edges of H II regions where such conditions are expected.  相似文献   

7.
The maser site OH 323.459−0.079 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yielded a series of maps at a velocity spacing of 0.18 km s−1, in both senses of circular polarization, with tenth-arcsec spatial resolution. Many small-diameter maser spots were detected within a 2-arcsec region. Pairs of spots with the same position, but with right- and left-hand circular polarization offset in frequency, reveal Zeeman splitting. Six pairs were found, and in four cases, the pairs at 1667 and 1665 MHz mutually corroborate the derived values of magnetic field and (central) kinematic velocity. Over the whole site, magnetic field estimates range from +1.47 to +4.13 mG with a median value of +2.5 mG. The excited state of OH at 6035 MHz also displays Zeeman pairs revealing a similar magnetic field, and we show that the most prominent of these pairs coincides with the most prominent pair at 1665 and 1667 MHz.
We also compared the morphology and kinematics at 1665 and 1667 MHz with those of maser emission from the excited state of OH at 6035 MHz and from methanol at 6668 MHz. All three varieties of masers appear intermingled, and associated with an ultracompact H  ii region. In many respects we find that OH 323.459−0.079 is similar to W3(OH), one of the few other maser sites yet studied in comparable detail.  相似文献   

8.
We analyzed the monitoring data for the maser S255 obtained in the H2O line at λ=1.35 cm with the 22-m radio telescope at the Pushchino Radio Astronomy Observatory in 1981–2002. The maser was most active during 1998–2002. Since 2001, the H2O spectra have been extended and complex; their triplet structure has been disrupted. The extent of the spectra was 24 km s?1 (from ?6 to 18 km s?1). We calculated orbital parameters for some of the components. We estimated the mass of the central star to be (6–7)M and the outer Keplerian-disk radius to be ~160 AU.  相似文献   

9.
MERLIN observations are presented of OH 4765-MHz and OH 1720-MHz masers in the massive star-forming region W3(OH). Two of the three intense spots of maser emission at 4765 MHz are spatially coincident with two similar spots at 1720 MHz in both left-hand circular (LHC) and right-hand circular (RHC) polarizations, to an accuracy of 15 mas. The spots also overlap in velocity when allowance is made for Zeeman splitting of the 1720-MHz line. We conclude that we have found two examples of masers in different rotational levels of OH which are co-propagating through the same column of gas and experiencing competitive gain effects. The third 4765-MHz maser spot was found to have no overlapping counterpart amongst the 1720-MHz masers.  相似文献   

10.
The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with 0.1-arcsec spatial resolution, at velocity spacing  0.09 km s−1  , and in both senses of circular polarization reveals 59 small diameter maser spots. The spots are scattered over 2 arcsec, coincident with a strong ultracompact H  ii region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from −1.1 to −4.7 mG, with a median value of −3.5 mG. Excited state masers of OH at 6035 and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of −5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong H  ii regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.  相似文献   

11.
We have used the Australia Telescope Compact Array (ATCA) to make a sensitive  (5 σ ≃100 mJy)  search for maser emission from the 4765-MHz 2Π1/2   F =1→0  transition of OH. 55 star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward 14 sites, with 10 of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2   F =1→1  transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550−0.979. If confirmed this would be only the second maser discovered from this transition.
The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well-studied star formation regions has led to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than 1720-MHz OH maser emission is. Combining our results with those of previous high-resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predicts any conditions in which the 1665-, 6035- and 4765-MHz transitions are inverted simultaneously.  相似文献   

12.
We analyze our monitoring data for the water-vapor maser in the source W31(2), associated with a region of vigorous star formation, a cluster of OB stars. The monitoring was performed with the 22-m radio telescope at Pushchino Radio Astronomy Observatory during 1981–2004. The variability of the H2O maser in W31(2) was found to be cyclic, with a mean period of 1.9 yr. Two flares were most intense (superflares): in 1985–1986 and 1998–1999. In each activity cycle, we observed up to several short flares, subpeaks. The fluxes of many emission features during the flares were correlated. We also observed successive activation of individual emission features in order of increasing or decreasing radial velocity, suggesting an ordered structure and, hence, a radial-velocity gradient of the medium. There is a clear correlation of the emission peaks of the main components in the spectra at radial velocities of ?1.7, ?1.3, 0.5, and 1.3 km s?1 with activity cycles and of the emission at VLSR < ?8 km s?1 with short flares. During the superflares, the emission in the low-velocity part of the H2O spectrum and a number of other phenomena related to coherent maser-emission properties were suppressed. The maser spots are assumed to form a compact structure, to have a common pumping source, and to be associated with an accretion flow onto the cluster of OB stars.  相似文献   

13.
The Parkes radio telescope has been used to study circular polarization in the spectra of masers at the 6035- and 6030-MHz transitions of excited OH. The targets were 91 previously catalogued sites of 6035-MHz maser emission. A few were not detected, primarily because of variability. However, the 6035-MHz intensity variations seldom exceed a factor of 2 over several years, with a handful of dramatic exceptions.
Towards many targets, the present observations have provided the first high-sensitivity search for the 6030-MHz transition and yielded 33 detections. All of the 6030-MHz maser features have 6035-MHz counterparts closely matching in velocity. For matching features, the 6030-MHz emission is most commonly weaker than the 6035-MHz emission by an order of magnitude but, in a few cases, is several times stronger. The detection statistics are well accounted for by very recent developments in maser modelling. However, the occasional occurrence of 6030-MHz maser emission stronger than at 6035-MHz poses a new challenge for the theory.
Spectra with good frequency resolution at 6030 and 6035 MHz yield many valuable measurements of magnetic fields. At each transition, the field can be inferred from a small frequency separation between the right-hand and left-hand circularly polarized features, attributed to the Zeeman effect in a magnetic field of a few mG. In the many instances where a 'Zeeman pair' on the 6035-MHz spectrum has features matched by the 6030-MHz spectrum, this provides convincing corroboration of the magnetic field, in both direction and magnitude.
Several prominent absorption features occur at 6035 MHz, and usually have matching absorption at 6030 MHz of similar, or slightly smaller, depth.  相似文献   

14.
We report on the first space–VLBI observations of the OH 34.26+0.15 maser in two main-line OH transitions at 1665 and 1667 MHz. The observations involved the space radio telescope on board the Japanese satellite HALCA and an array of ground radio telescopes. The map of the maser region and images of individual maser spots were produced with an angular resolution of 1 mas, which is several times higher than the angular resolution available on the ground. The maser spots were only partly resolved and a lower limit to the brightness temperature     was obtained. The maser seems to be located in the direction of low interstellar scattering, an order of magnitude lower than the scattering of a nearby extragalactic source and pulsar.  相似文献   

15.
Simultaneous MERLIN observations of the OH 1665- and 1667-MHz maser lines in the circumstellar envelope of the semiregular star W Hya have been taken in all Stokes parameters. The 1665-MHz emission comes from two elongated clusters located 80 au from the star. The 1667-MHz emission arises in an incomplete shell of radius 130 au, with the blueshifted features located in the northern part of the envelope and the redshifted components clustered south of the centre. The circularly polarized maser components exhibit spatial separation along the north–south direction. The linearly polarized components were found from the near side of the envelope. Their polarization position angles indicate that the projected axis of the magnetic field at PA ≃ −20° is consistent with spatial segregation of circular polarization. The intensity of the magnetic field, estimated from a tentative measurement of Zeeman splitting, is about 0.6 mG at the location of the 1667-MHz emission, with the field pointing away from the observer. A small change of position angles of linear polarization observed in both maser lines is interpreted as a weak Faraday effect in the maser regions with an electron density of about 2 cm−3. The overall polarization structure of the envelope suggests an ellipsoidal or weak bipolar geometry. In such a configuration, the circumstellar magnetic field may exert a non-negligible influence on mass loss. The velocity field in the circumstellar envelope recovered from observations of SiO, H2O, OH and CO lines at five radial distances reveals a logarithmic velocity gradient of 0.25 and 0.21 in the 1665- and 1667-MHz maser regions respectively. The acceleration within tens of stellar radii cannot be explained by the classical model of radiation pressure on dust.  相似文献   

16.
We analyze the line shape for emission peaks of H2O maser sources associated with star-forming regions by using the spectra obtained with the RT-22 radio telescope at the Pushchino Radio Astronomy Observatory. For five sources, we found the line profile of emission peaks to be asymmetric. In all cases, the left (high-frequency) line wing is higher than the right wing. Our analysis of the line shape yielded additional information on the structure and evolution of the maser sources under study. In G43.8-0.1, the emission feature was found to split up into two components. To explain the evolution of the 16.8 km s?1 line in NGC 2071, we propose a model in which the line-of-sight velocity gradient changes under the effect of a (non-shock) wave. The observed short-duration flares of individual emission features in W75N can emerge due to a chance projection of the numerous clumps of matter involved in Keplerian motion onto each other.  相似文献   

17.
We present single-baseline Multi-Element Radio-Linked Interferometer Network (MERLIN) measurements of excited OH 6.0-GHz masers and methanol 6.7-GHz masers for the source W3(OH). These allow us to compare the positions of individual maser spots of these two species to ∼15 mas accuracy for the first time, and to compare these with previously published positions of ground-state OH masers near 1.7 GHz and excited-state OH masers near 4.7 GHz. There is a strong association between OH 6035-MHz and 1665-MHz masers. OH and methanol have very similar distributions, but associations of individual masers are relatively rare: most methanol 6.7-GHz masers are within 100 mas of OH 6.0-GHz masers, but only four methanol masers are within 15 mas of an OH 6.0-GHz maser. There are no correspondences of either species with excited OH 4.7-GHz masers. Zeeman splitting of the 6.0-GHz OH lines indicates an ordered magnetic field ranging from 3.2 to 14.4 mG. The magnetic fields estimated from co-propagating masers such as 6035 and 1665 MHz are generally in good agreement with each other.  相似文献   

18.
The Australia Telescope Compact Array has been used to observe more than 200 1665-MHz hydroxyl masers south of declination −16° and derive their positions with typical rms uncertainties of 0.4 arcsec. Many of the 1665-MHz maser sites are found to have 1667-MHz OH maser counterparts which are coincident, within the errors.
The resulting position list presented here includes all well-documented, previously reported 1665-MHz masers close to the Galactic plane in the galactic longitude range 230° (through 360°) to 13°. Nearly 50 newly discovered masers are also listed, chiefly in the longitude range 312° to 356°, where the observations were conducted as an intensive survey of a continuous zone close to the Galactic plane.
Many of the maser sites are discussed briefly so as to draw attention to those possessing properties that are unusual among this large sample. Most of the masers are of the variety found in star-forming regions – at the sites of newly formed massive stars and their associated ultracompact H ii regions. The new, accurate, positions reveal coincidences of the OH masers with the continuum radio emission, with the infrared emission from dust that accompanies such regions, and with emission from other maser species such as methanol at 6668 MHz and water at 22 GHz.
By-products of the survey, also presented here, include measurements of at least 11 objects that are not associated with massive star-forming regions. They comprise several OH/IR stars (detected at the 1667- or 1665-MHz transition of OH, though commonly found to be most prominent at the 1612-MHz transition) and several unusual masers that may pinpoint other varieties of late-type stars or protoplanetary nebulae.  相似文献   

19.
Phase-referenced observations of 13 star-forming regions in the  2Π1/2, J = 1/2  transition of rotationally excited OH at 4765 MHz have been carried out using MERLIN. Two of the regions were also observed at 4750 MHz and one at 4660 MHz. There were 10 maser detections at 4765 MHz and three non-detections. There were no detections at 4750 and 4660 MHz. The 4765-MHz masers have brightness temperatures of  ∼107 K  at MERLIN resolution (∼50 mas). Several cases of 4765-MHz masers overlapping in position and velocity with 1720- and 1665-MHz masers are reported. There are also isolated 4765-MHz masers with peak flux densities ≥30 times that of any ground-state counterpart. Most of the 4.7-GHz maser spots are unresolved at 50-mas angular resolution, but in four of the nearest sources the maser spots are resolved, indicating a characteristic size for 4765-MHz maser regions of ∼100 au. In W3(OH) we discovered that 20 per cent of the 4765-MHz emission comes from a narrow low-brightness filament that stretches north–south for ∼1.0 arcec (∼2200 au) between two previously known 4765-MHz maser spots. The filament appears in projection against the H  ii region and has a brightness temperature of  ∼4 × 105 K  . There are matching absorption features in mainline transitions of highly excited OH. The filament may trace a shock front in a rotating disc.  相似文献   

20.
We present a possible formation mechanism of the asymmetry in the maser emission line of H2O sources associated with star-forming regions. Observations with the RT-22 radio telescope at the Pushchino Radio Astronomy Observatory are used. We analyze the line profiles of emission features in the sources G43.8-0.1, NGC 2071, and ON1. If the line is asymmetric, the left (low-velocity) wing is higher than the right wing. The proposed mechanism accounts for the observed asymmetry and makes it possible to estimate some physical parameters of the medium in the vicinity of a maser spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号