首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   

2.
The Permian Lopingian in the Dianqiangui Basin and its adjacent areas is marked by the coal measures of the Wuchiapingian and the carbonate strata of the Changhsingian stages. For the Lopingian of the Dianqiangui Basin and its adjacent areas,the diversity of sedimentary facies and the obviousness of facies change provide an advantaged condition on a study of sequence stratigraphy. Approximately,the Wuchiapingian stage constitutes a third-order sequence and the Changhsingian stage forms an-other. For the Wuchiapingian stage in the study area,coal-measures were developed on the attached platform and,in addition,a special coal-measure that is composed of both limestone beds and coal beds was also developed in the central part of some isolated platforms. Grain-bank grainstones and packstones were formed on the margin of the attached platform as well as in the windward part of iso-lated platforms. For the Changhsingian stage in the study area,open-platform limestones were formed on the attached platform,while sponge-reef limestones were developed both on the margin of the at-tached platform and on the isolated platforms. The Lopingian Series is a set of basin-facies muddy shales with interbeds of silicalites in the inter-platform basin,which appears a set of the large-thick coarse clastic strata of molasses covering direct the deep-water strata from the Devonian to the Per-mian Yangsingian in the Qinzhou-Fangcheng region in the southern part of the study area. All of these features indicate the complexity of temporal-spatial facies-changes. Sequence-stratigraphic frame-works could be established,which would illustrate two types of facies-changing surfaces and dia-chronisms in the stratigraphic records,based on the combination of both biostratigraphic and chronostratigraphic materials and the regularity reflected by temporal evolutionary succession of sediments as well as spatial distributional patterns of sedimentary facies. Ultimately,features of sedi-mentary succession and palaeogeographical evolution of the Permian Lopingian in the study area are revealed clearly in a series of the panel diagrams of sequence-stratigraphic frameworks and the outline maps showing the sedimentary-facies and palaeogeography. The Permian Lopingian formed by two third-order sequences differs from the stratigraphy of the same era characterized by the constant re-gression along Euramerica. Most specially,if the end-Guadalupian mass-extinction event is genetically related to a regressive event represented by the unconformity of the first episode of the Dongwumovement in the study area,the mass-extinction event at the turn from the Permian to the Triassic is genetically related to a rapid transgressive event re-flected by the drowning unconformity in the study area. These phenomena might reveal a complex rela-tionship between mass-extinction events and trans-gressive-regressive events.  相似文献   

3.
Sedimentary environment and distribution of brachiopods during the Changhsingian in Xingwen, Si-chuan Province of the upper Yangtze region, are statistically analyzed. Changing regularity in diversity of brachiopod is synthetically investigated based on qualitative and quantitative analysis of transgres-sion-regression cycles. The results show that the diversity of brachiopods in this region in the trans-gression (aggradation) sequence is higher than that in the regression (progradation) sequence. The brachiopods in this area began to diversify in the early Changhsingian. And the species diversity had four peak stages which are respectively in the middle Early Changhsingian, late Early Changhsingian, early Late Changhsingian and late Late Changhsingian. The species diversity reached its highest in the late Late Changhsingian but this is followed by a sharp decrease at the end-hanghsingian, indicating the mass extinction of most brachiopod species which were prosperous in the Late Paleozoic.  相似文献   

4.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

5.
The well-known Permian Changhsingian calcisponge reef located at Panlongdong section,Xuanhan county,northeastern Sichuan Basin has attracted wide attention.Due to severe dolomitization and poor quality of the fossils,the P-T boundary in this section is difficult to determine.This study,for the first time,recognized six communities in the Upper Permian Changhsingian Changxing Formation through the Lower Triassic Induan Feixianguan Formation of the Panlongdong section.They are Bryozoan-Archaeolithoporella-calcisponge Community,Calcareous green algae-foraminifer-crinoid Community,Microgastropod-foraminifer Community,Ostracod-microgastropod-cystic microbe Community,Ostracod-small brachiopod Community,and Non-calcified cyanobacteria Community.By using community replacement and palaeoenvironmental analysis,for the first time,we set the P-T boundary of the Panlongdong section at the middle of the calcimicrobialite containing cystic microbes.The community replacement sequence in the Panlongdong section is similar to that in other contemporaneous sections in reef areas of South China,indicating universal palaeoenvironmental changes during the Permian-Triassic transition.The results show that:(1)Changhsingian calcisponge reefs in South China generally vanished before the mass extinction and may be related to the large regression in the Late Permian.(2)The Calcareous green algae-foraminifer-crinoid Community replaced reef community and continued till the mass extinction.The mass extinction was probably related to the global sea-level drop.(3)The first aftermath community was dominated by specialized microgastropods,followed by the microbes,and then by the specialized microgastropods and small brachiopods.The succession of the three communities reflected the change in environmental conditions from dysoxic to anoxic and again to dysoxic.(4)In the Early Triassic,the relict community in shallow sea had very low diversity and low abundance,and was dominated by crinoids,gastropods,and bivalves.  相似文献   

6.
Katsumi  Ueno  Satoe  Tsutsumi 《Island Arc》2009,18(1):69-93
This paper deals with a Lopingian (Late Permian) foraminiferal faunal succession of the Shifodong Formation in the Changning–Menglian Belt, West Yunnan, Southwest China, which has been geologically interpreted as one of the closed remnants in East Asia of the Paleo‐Tethys Ocean. The Shifodong Formation is the uppermost stratigraphic unit in thick Carboniferous–Permian carbonates of the belt. These carbonates rest upon bases consisting of oceanic island basalt and are widely accepted as having a Paleo‐Tethyan mid‐oceanic (seamount‐ or oceanic plateau‐top) origin. Sixteen taxa of fusuline foraminifers and 37 taxa of smaller (non‐fusuline) foraminifers are recognized from the type section of the Shifodong Formation located in the Gengma area of the northern part of the Changning–Menglian Belt. Based on their stratigraphic distribution, three fusuline zones can be established in this section: they are, in ascending order, the Codonofusiella cf. C. kwangsiana Zone, Palaeofusulina minima Zone, and Palaeofusulina sinensis Zone. These three biozones are respectively referable to the Wuchiapingian, early Changhsingian, and late Changhsingian, of which the Wuchiapingian is first recognized in this study in the Changning–Menglian mid‐oceanic carbonates. The present study clearly demonstrates that the foraminiferal fauna in a Paleo‐Tethyan pelagic shallow‐marine environment still maintained high faunal diversity throughout the almost entire Lopingian, although the very latest Permian fauna in the upper part of the Palaeofusulina sinensis Zone of the Shifodong section records a sudden decrease in both faunal diversity and abundance. Moreover, the Shifodong faunas are comparable in diversity with those observed in circum‐Tethyan shelves such as South China. The present Paleo‐Tethyan mid‐oceanic foraminiferal faunas are definitely more diversified than coeval mid‐oceanic Panthalassan faunas, which are typically represented by those from the Kamura Limestone in a Jurassic accretionary complex of Southwest Japan. It is suggestive that the Paleo‐Tethyan mid‐oceanic buildups presumably supplied a peculiarly hospitable habitat for foraminiferal faunal development in a pelagic paleo‐equatorial condition.  相似文献   

7.
Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.  相似文献   

8.
JUN-ICHI  TAZAWA 《Island Arc》2002,11(4):287-301
Abstract    Late Paleozoic (Middle Devonian, Early Carboniferous and Middle Permian) brachiopod faunas of the South Kitakami Belt, northeast Japan, are closely related paleobiogeographically to those of the Xinjiang–Inner Mongolia–Jilin region, northwest–northeast China. This relationship suggests that the South Kitakami Belt was part of the trench or continental shelf bordering the northern and eastern margins of North China (Sino-Korea) during the Middle Devonian to Middle Permian times. Among the three models on the origin and tectonic development of the South Kitakami Belt, the strike–slip model is most consistent, but both the microcontinent model and the nappe model have considerable inconsistencies with the above paleobiogeographic and paleogeographic evidence.  相似文献   

9.
Changing stresses in multi-stage caldera volcanoes were simulated in scaled analogue experiments aiming to reconstruct the mechanism(s) associated with caldera formation and the corresponding zones of structural weakness. We evaluate characteristic structures resulting from doming (chamber inflation), evacuation collapse (chamber deflation) and cyclic resurgence (inflation and deflation), and we analyse the consequential fault patterns and their statistical relationship to morphology and geometry. Doming results in radial fractures and subordinate concentric reverse faults which propagate divergently from the chamber upwards with increasing dilation. The structural dome so produced is characterised bysteepening in the periphery, whereas the broadening apex subsides. Pure evacuation causes the chamber roof to collapse along adjacent bell-shaped reverse faults. The distribution of concentric faults is influenced by the initial edifice morphology; steep and irregular initial flanks result in a tilted or chaotic caldera floor. The third set of experiments focused on the structural interaction of cyclic inflation and subsequent moderate deflation. Following doming, caldera subsidence produces concentric faults that characteristically crosscut radial cracks of the dome. The flanks of the edifice relax, resulting in discontinuous circumferential faults that outline a structural network of radial and concentric faults; the latter form locally uplifted and tiltedwedges (half-grabens) that grade into horst-and-graben structures. This superimposed fault pattern also extends inside the caldera. We suggest that major pressure deviations in magma chamber(s) are reflected in the fault arrangement dissecting the volcanoflanks and may be used as a first-order indication of the processes and mechanisms involved in caldera formation.  相似文献   

10.
Continous marine sedimentation characterizes many Late Permian to Early Triassic sections on the Yangtze terrane in South China. The Permo-Triassic (P/Tr) boundary section at Shangsi (Sichuan Province) consists of limestones intercalated with clays and mudstones which belong to the Wuchiapingian and Changxingian (Upper Permian) and the Griesbachian and Dienerian (Lower Triassic) stages. The P/Tr boundary is formed by a clay horizon with an unusually high iridium concentration. The intensity of natural remanent magnetization is very low with a mean of 0.15 mA m−1. About 40% of the samples contain secondary or unstable magnetization components only, whereas the remaining samples carry a characteristic remanent magnetization thought to reflect the polarity of the geomagnetic field during deposition with sufficient accuracy. Normal and reversed polarity of the characteristic magnetization constitute a pattern of at least six polarity zones, the P/Tr boundary being situated very close to the transition from a reversed to a normal polarity zone. The Shangsi polarity sequence represents part of the Illawarra interval of mixed polarity, the exact beginning of which has still to be determined.  相似文献   

11.
A composite standard section (CSS) has been established for the Maokouan (≈ Guadalupian) in Guizhou Province, southwestern China, which includes stratigraphical ranges of 179 fusulinacean species from five sections of the Maokou Formation in this area. Based on statistical results of the first and last appearances of fusulinacean species in the CSS, three evolutionary radiations and four pulses of extinction, characterized by high rates of species origination and extinction significantly different from the rates of background evolution, are recognized in the Maokouan fusulinacean fauna. The evolutionary pattern of fusulinacean foraminifer suggests that the Maokouan mass extinction probably started at the middle Maokouan and dramatically intensified in the late Maokouan. Project supported by the National Natural Science Foundation of China (Grant No. 49572075) and the Ministry of Education of China (Grant No. 9528417).  相似文献   

12.
Since the recognition of the Cambrian Evolutionary Fauna, Paleozoic Evolutionary Fauna and Modern Evolutionary Fauna[1—3], more and more paleontolo-gists have paid attention to the great Ordovician bio-diversification event which was critical to the forma-tion of the Paleozoic Evolutionary Fauna, and during which the marine organisms experienced one of the most profound evolutionary radiations of the Phan-erozoic[4]. Three biodiversity maxima have been rec-ognized on a global scale[5] wi…  相似文献   

13.
Tsutomu  Nakazawa  Katsumi  Ueno    Xiangdong  Wang 《Island Arc》2009,18(1):94-107
Huge carbonate rock bodies ranging in age from the Visean (Middle Mississippian/Early Carboniferous) to the Changhsingian (Lopingian/Late Permian) overlie a basaltic basement in the Changning–Menglian Belt, West Yunnan, Southwest China. These carbonates lack intercalations of terrigenous siliciclastic material throughout. These lines of evidence indicate that they formed upon an isolated and continuously subsiding mid-oceanic island (or plateau), probably of hotspot origin. The carbonates are grouped into a shallow-water carbonate platform facies regime observed in the Yutangzhai section and a relatively deep-water carbonate slope facies regime typically represented in the Longdong section. These two facies regimes developed contemporaneously as parts of a carbonate depositional system on and around a mid-oceanic volcanic edifice. The carbonate platform is subdivided into four facies, including platform-margin, shoal, lagoon, and peritidal facies. Along the measured Yutangzhai section of the platform facies regime, the vertical facies succession from the platform-margin facies into inner-platform facies such as the shoal and lagoon facies is recognized. This facies succession is explained as resulting from the progradation of the carbonate platform. Worm tubes occur as a main reef builder in platform-margin facies of the Mississippian. Their occurrence as major constituents in a high-wave-energy reef is peculiar to Carboniferous reef distributions of the world. The occurrences of other reef- and/or mound-building organisms and peritidal dolo-mudstone are almost consistent in timing with those of Panthalassan counterparts such as the Akiyoshi and Omi limestones of Japan, and probably exhibit the worldwide trend.  相似文献   

14.
Gaoping  Shen  Hiroshi  Ujilé Katsuo  Sashida 《Island Arc》1996,5(2):156-165
Abstract The pre-Neogene basement of the central Ryukyu Island Arc shows zonal structures analogous to those of the outer belt of southwest Japan. The innermost terrane (Iheya Zone) consists of isoclinally folded beds dipping northwestward; the anticlinal cores are composed mainly of Permian chert, whereas the synclinal parts are represented by Jurassic to Cretaceous sandstone-rich alternating siliceous shale and chert, bearing appropriate radiolarian fossils. At the east-central area of Ie Island, the basement rocks are exposed as a 172 m high peak, Tattyu. The flank area of Tattyu is composed of latest Jurassic to Berriasian siliceous shale and chert as part of an accretionary prism, while most of Tattyu is composed of a continuous and very compact sequence of Norian through Kimmeridgian (?) bedded chert which is rather gently inclined. Beyond an unexposed part below the Norian chert, Guadalupian chert is recognized. It is inferred that this pelagic chert (Tattyu sequence) was off-scraped and thrust on to the accretionary prism which developed on its flank area in an accretion process after the Early Cretaceous.  相似文献   

15.
Mean radial distributions of various dynamic characteristics of the permanently existing anticyclonic Lofoten vortex (LV) in the Norwegian Sea are obtained from an eddy-permitting regional hydrodynamic MIT general circulation model. It is shown that the model adequately reproduces the observed 3D thermohaline and dynamic structure of the vortex. The obtained radial distribution of the mean vertical velocity is found to form a complex structure: with the upward fluxes along the axis in and above the anticyclonically rotating LV core, compensated by the downward fluxes in the vortex skirt. These vertical motions maintain the vortex potential energy anomaly against dissipation. This secondary circulation is generated by the centrifugal force and, to a lesser extent, by the horizontal dispersion of the vortex energy, both intensified towards the sea surface. Below the vortex core, the maximum downward vertical velocity converges towards the vortex axis with depth. At these depth levels, the secondary circulation is forced by Ekman divergence in the bottom mixed layer. The theory of columnar vortices with helical structure, applied to the LV, relate the radial profiles of the vertical velocity with those of the horizontal circulation. The theoretically predicted the radial patterns of the mean vertical velocity in the LV were close to those, obtained from the primitive equation ocean model, when approximating the radial patterns of the azimuthal velocity with the Rayleigh profile.  相似文献   

16.
Abstract   Fusulinoidean faunal succession from Paleo–Tethyan seamount-type carbonates of the Yutangzhai section in the Central zone of the Changning–Menglian Belt of West Yunnan, Southwest China, is presented for the first time. The Changning–Menglian Belt is one of the orogenic belts that represent the closed main Paleo–Tethys in East Asia. The Yutangzhai section is represented by basalts and overlying carbonates, about 1100 m thick. It exhibits a continuous faunal succession composed of 17 fusulinoidean assemblages ranging from the Serpukhovian (late Mississippian/late Early Carboniferous) to Midian/Capitanian (late Middle Permian/late Guadalupian). No significant faunal break can be recognized in this section. The generic and some specific composition of the Yutangzhai assemblages indicates that the faunal succession is similar to those observed in Tethyan and Panthalassan areas and is of tropical Tethyan type although their generic diversity is definitely lower than those of Paleo–Tethyan shelves, such as South China, Indochina, and Central Asia. Throughout the Yutangzhai section, the carbonate rocks are essentially massive, very pure in composition, and devoid of terrigenous siliciclastic inputs. These lithologic characters are identical to those observed in accreted shallow-marine carbonate successions of seamount origin in Permian and Jurassic accretionary complexes of Japan, for example the Akiyoshi Limestone. This evidence further demonstrates the seamount origin of the basalt–limestone succession in the Central zone of the Changning–Menglian Belt from the viewpoint of lithofacies. In middle Mississippian (middle Early Carboniferous) time, oceanic submarine volcanism that was probably related to hot spot activities formed a number of seamounts and oceanic plateaus. It was active not only in the Panthalassa, but also in the Paleo–Tethys.  相似文献   

17.
Introduction of species evolutionary sequence into the quantitative biostratigraphy is a significant work, either for studying biologic evolution or for making stratigraphic correlation and reconstructing geologic history. The quantitative biostratigraphy is to determine biostratigraphic event sequences by using probabilistic analysis. The evolutionary sequence systematics can efficiently ascertain species evolutionary sequences. Two methods have been proposed to determine the sequence of species-disappearance events: (1) species extinction events can be closed by last occurrence events using quantitative biostratigraphic analysis; (2) the duration of a species may be approximately replaced by the duration of its parent species. To combine these two methods for determining the sequence of species disappearance is the best way up to now. A consulting standard sequence that consists of the speciation sequence of Permian waagenophylloid corals and the biostratigraphic event sequence of other important fossils in Permian is used as an example. The group spearman rank-correlation test is used to test the consulting standard sequence by comparing four types of calculations and two kinds of sequences and to find abnormal events. Based on the found abnormal events in the test, the consulting standard sequence is revised to deal with different conditions. Sequences of speciation and species-disappearance, and species duration are determined. Application of species evolutionary sequence to quantitative biostratigraphy can largely improve the quality of biostratigraphic event sequence. In stratigraphic correlation, furthermore, event sequences have higher precision than range biozones.  相似文献   

18.
蔡仲琼  许秋龙 《内陆地震》1995,9(2):150-157
水化群体异常的演化趋势与地震活动密切相关。中强地震前,水化异常变化速率值呈现“增长-地震”的普遍规律。在月、旬和五日等不同时间尺度上的水化群体异常演化图式,具有显著的自相似性和可重复的特征,并可分别作为地震的短期、短临和临震前兆标志与发震的判别依据。  相似文献   

19.
Many fusulinid fossils have been found in thin- to middle-bedded limestones which are distributed between the Early Permian limestone hills and formerly considered as Early Triassic. The fusulinid fossils, identified asNeoshwagerina sp.,Verbeekina sp. andSchwagerina sp., can also be found in massive limestone hills. At the same time, Early Permian radiolarian chert of deep basin facies was discovered in Animaqing. All the above show that the massive limestone hills, thin- to middle-bedded limestones and radiolarian chert belong to syndeposits in Early Permian ocean. The sediments in the study area can roughly be divided into three types: shallow facies, basin facies and transitional facies. The carbonate buildup can be subdivided into massive bioclastic limestone and reef framestone. Basin facies contains thin- or middle-bedded limestone, abyssal red mudstone or ooze, blue-green mudstone and radiolarian chert. Transitional facies includes reef talus and platformal skirt facies. The Early Permian ocean in Eastern Kunlun is recognized as a kind of reef-island ocean environment according to distribution and composition of different facies. The reef-island ocean in Eastern Kunlun is characterized by reef islands (or carbonate buildups) alternating with basins, complicated sea-floor topography, sharp facial change and well-developed reefs.  相似文献   

20.
Signs of the evolutionary process are well preserved in the aeolian deposits of desert margins and enable reconstruction of desert expansion and contraction. The sand content (percentage >63 µm) of loess in the loess–desert transitional zone was used as a proxy indicator for determining the proximity of the desert margin. According to the dominant wind direction, generally NW–SE in the northwest Chinese Loess Plateau, a transect was projected to observe spatial changes in sedimentological characteristics of aeolian deposits during the Last Glacial Period. The transect consists of 12 loess sections, starting at Shapotou in the transitional region between the Loess Plateau and the Tengger Desert and ending at Tianshui, which is located at the north foot of the Western Qinling Mountains in the southernmost part of the Loess Plateau. It shows the properties of temporal and spatial distribution of the Malan loess, with reduced sand content from northwest to southeast. A linear correlation model of sand content and distance was obtained, which was similar to the east of the Chinese Loess Plateau. According to this model, and on the basis of optically stimulated luminescence (OSL) dating from Binggou section, a detailed and quantificational expansion and contraction for the Tengger Desert was established. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号