首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproducibility of Re-Os molybdenite ages depends on sample size and homogeneity, suggesting that Re and Os are decoupled within individual molybdenite crystals and do not remain spatially linked over time. In order to investigate the Re-Os systematics of molybdenite at the subgrain (micron) scale, we report LA-ICP-MS Re-Os ages for an Archean molybdenite crystal from Aittojärvi, Finland, analyzed in situ in a white aplite matrix. A related Aittojärvi molybdenite (A996D), in the form of a very fine-grained mineral separate, is used as one of our in-house NTIMS standards, and thus its age of 2760 ± 9 Ma is well established. Measurements of (187Re + 187Os)/185Re on micron scale spots along 200 μm traverses across the crystal yield a wide range of ages demonstrating that, in this case, microsampling of molybdenite does not produce geologically meaningful ages. Experimentation with mineral separations and sample size over a 7-yr period predicted that this would be the outcome. We suggest that 187Os is more likely to be the mobile species, based on its charge and ionic radius, and that 187Os becomes decoupled from parent 187Re with time on the micron and larger scale. Incompatible charge and ionic radius for Os ions formed during reduction of molybdenite-forming fluids may explain the widely observed absence of common (initial) Os in molybdenite. Geologically accurate ages for molybdenite can only be obtained for fully homogenized crystals (or crystal aggregates) so that any post-crystallization 187Re-187Os decoupling is overcome.A growing number of geologically accurate ID-NTIMS 187Re-187Os ages for homogenized molybdenite suggest that postcrystallization mobility of radiogenic 187Os must be limited to within the molybdenite mineral phase. We suggest that radiogenic 187Os may be stored in micron scale dislocations, kink bands, and delamination cracks produced by deformation, and that the unusual structure and deformation response of molybdenite results in an increased chemical stability in this mineral. Migration of 187Os into adjacent silicate phases is highly unlikely, but other contacting sulfides may take in Os. In an example from a Proterozoic skarn deposit at Pitkäranta (western Russia), we demonstrate minor loss of radiogenic 187Os from molybdenite and a corresponding gain in adjacent chalcopyrite such that the molybdenite age is not perceptibly disturbed, whereas the resulting chalcopyrite ages are impossibly old. Therefore, it is unadvisable to perform Re-Os analytical work on any sulfide in contact or intimate association with molybdenite. In addition to large errors in the age, if the isochron method is employed, initial 187Os/188Os ratios could be erroneously high, leading to seriously errant genetic interpretations.  相似文献   

2.
含有普通锇的辉钼矿Re-Os同位素定年研究   总被引:14,自引:3,他引:11  
通过大量数据统计,表明较高比例的辉钼矿中存在普通锇。普通锇可能以类质同像形式存在于辉钼矿样品中,理论上辉钼矿中可能含有较高含量普通锇。辉钼矿样品含有较高含量普通锇可能对Re-Os定年结果产生很大影响,从原理上并结合实例证实了普通锇含量对辉钼矿Re-Os年龄影响程度。对于一般辉钼矿样品来讲,如果187Os总量(放射成因187Os与非放射成因187Os之和)与普通锇比值小于20,需要考虑普通锇对Re-Os模式年龄的影响,并提出了对于含有普通锇辉钼矿模式年龄的计算方法。先做出187Os/188Os-187Re/188Os等时线,求得初始187Os/188Os值,再根据初始187Os/188Os值和单个样品的普Os含量求得非放射成因的普Os中187Os的量。最后根据Re含量以及放射成因187Os含量得到模式年龄。  相似文献   

3.
Seven 187Re-187Os ages were determined for molybdenite and pyrite samples from two well-dated Precambrian intrusions in Fennoscandia to examine the sustainability of the Re-Os chronometer in a metamorphic and metasomatic setting. Using a new 187Re decay constant (1.666 × 10−11y−1) with a much improved uncertainty (±0.31%), we determined replicate Re-Os ages for molybdenite and pyrite from the Kuittila and Kivisuo prospects in easternmost Finland and for molybdenite from the Kabeliai prospect in southernmost Lithuania. These two localities contain some of the oldest and youngest plutonic activity in Fennoscandia and are associated with newly discovered economic Au mineralization (Ilomantsi, Finland) and a Cu-Mo prospect (Kabeliai, Lithuania). Two Re-Os ages for vein-hosted Kabeliai molybdenite average 1486 ± 5 Ma, in excellent agreement with a 1505 ± 11 Ma U-Pb zircon age for the hosting Kabeliai granite pluton. The slightly younger age suggests the introduction of Cu-Mo mineralization by a later phase of the Kabeliai magmatic system. Mean Re-Os ages of 2778 ± 8 Ma and 2781 ± 8 Ma for Kuittila and Kivisuo molybdenites, respectively, are in reasonable agreement with a 2753 ± 5 Ma weighted mean U-Pb zircon age for hosting Kuittila tonalite. These Re-Os ages agree well with less precise ages of 2789 ± 290 Ma for a Rb-Sr whole-rock isochron and 2771 ± 75 Ma for the average of six Sm-Nd TDM model ages for Kuittila tonalite. Three Re-Os analyses of a single pyrite mineral separate, from the same sample of Kuittila pluton that yielded a molybdenite separate, provide individual model ages of 2710 ± 27, 2777 ± 28, and 2830 ± 28 Ma (Re = 17.4, 12.1, and 8.4 ppb, respectively), with a mean value of 2770 ± 120 Ma in agreement with the Kuittila molybdenite age. The Re and 187Os abundances in these three pyrite splits are highly correlated (r = 0.9994), and provide a 187Re-187Os isochron age of 2607 ± 47 Ma with an intercept of 21 ppt 187Os (MSWD = 1.1). It appears that the Re-Os isotopic system in pyrite has been reset on the millimeter scale and that the 21 ppt 187Os intercept reflects the in situ decay of 187Re during the ∼160 to 170 m.y. interval from ∼2778 Ma (time of molybdenite ± pyrite deposition) to ∼2607 Ma (time of pyrite resetting). When the Re-Os data for molybdenites from the nearby Kivisuo prospect are plotted together with the Kuittila molybdenite and pyrite data, a well-constrained five-point isochron with an age of 2780 ± 8 Ma and a 187Os intercept (−2.4 ± 3.8 ppt) of essentially zero results (MSWD = 1.5). We suggest that the pyrite isochron age records a regional metamorphic and/or hydrothermal event, possibly the time of Au mineralization. A proposed Re-Os age of ∼2607 Ma for Au mineralization is in good agreement with radiometric ages by other methods that address the timing of Archean Au mineralization in deposits worldwide (so-called “late Au model”). Molybdenite, in contrast, provides a robust Re-Os chronometer, retaining its original formation age of ∼2780 Ma, despite subsequent metamorphic disturbances in Archean and Proterozoic time. Received: 25 September 1996 / Accepted: 27 August 1997  相似文献   

4.
大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究   总被引:10,自引:4,他引:6  
李超  屈文俊  杜安道 《矿床地质》2009,28(5):707-712
对采自西华山钨矿的大颗粒辉钼矿样品的不同部位进行了取样,并对其年龄分别进行精确厘定,得到了不同的Re-Os模式年龄值,验证了失耦现象的存在.从原理上对失耦现象及其成因进行了解释,并在前人成果的基础上,探索性地提出了187Os可能的迁移模型.取样方式的不同会对辉钼矿的模式年龄产生很大影响,因此,在实际应用中一定要严格遵循"多取样,细磨碎"的原则,这对于能获得科学真实的与地质背景相符的Re-Os同位素地质年龄,从而深入探讨矿床成矿作用具有重要意义.  相似文献   

5.
辉钼矿Re-Os同位素定年方法的改进与应用   总被引:13,自引:9,他引:4  
公认的Re-Os同位素定年代表物辉钼矿,目前已在金属硫化物矿床年代学研究领域获得了广泛的应用。本研究采用浓HNO3分解辉钼矿样品,大大地简化了Re和Os的化学制备过程,并根据辉钼矿中正常Os含量水平相对放射成因187Os可以忽略的特点,以正常Os标准为稀释剂,实现了仪器测量过程中Os同位素质量分馏的在线校正,改善了分析数据的质量。该方法经辉钼矿国家标准物质进行验证,获得了满意的Re、Os含量及Re-Os年龄数据,并且在南岭地区与连阳复式岩体相关的姓坪夕卡岩型钼矿床成矿年龄研究中获得了成功应用。在实际应用中,为了获得有意义的能反映真实地质事件的年龄数据,辉钼矿样品不仅要有足够的取样量,而且还要保证粒度细、混合均匀。  相似文献   

6.
刘舒波  李超  岑况  屈文俊 《现代地质》2012,26(2):254-260
采用硝酸在比色管中对辉钼矿样品中Re含量进行初测的方法,测得辉钼矿标准样品JDC Re含量与推荐值在误差范围内基本一致,与传统的Carius管法相比,该方法具有简便快速的特点。传统的辉钼矿Re-Os同位素定年分析对象为辉钼矿单矿物,根据所测得的187Re/187Os值获得辉钼矿的Re-Os年龄,Re、Os在辉钼矿中大量富集,而在硅酸盐矿物中几乎没有,探索性地对含有辉钼矿的全岩样品进行Re-Os同位素定年,虽然所得Re、Os含量偏低,但187Re/187Os值不会变。该方法省去了选样过程花费的大量时间,避免了选样过程中可能造成的交叉污染。采用同位素稀释Carius管逆王水法探索性地对北京大庄科钼矿床中含辉钼矿全岩样品进行Re-Os同位素年龄测定,获得了(137.6±3.7)Ma精确的等时线年龄,与挑选出辉钼矿单矿物样品的Re-Os同位素等时线年龄(136.8±2.6)Ma吻合较好,直接厘定了大庄科钼矿的成矿时代。该年龄与矿区汉家川石英二长岩锆石U-Pb年龄一致,表明大庄科钼矿的形成与汉家川石英二长岩关系较为密切,为中国东部第二期大规模成矿作用的产物,形成于中国东部岩石圈伸展环境。  相似文献   

7.
The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high‐grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID‐NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP‐MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid‐state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point‐in‐time markers for age comparisons.  相似文献   

8.
Re-Os法能够直接厘定内生金属矿床成矿时代,但是封闭Carius管法化学流程复杂,且有一定的危险性。本文建立了一种简便快速测定辉钼矿Re-Os年龄及其Re含量的方法。用3 mL浓硝酸在10 mL比色管中溶解5~15 mg辉钼矿样品,将溶液中的钼酸沉淀分离后稀释定容,直接采用质谱测量187和185质量数比值(M187/M185)。利用辉钼矿Re-Os年龄标准物质JDC和HLP的M187/M185值与其年龄的正相关线性关系计算未知辉钼矿样品的Re-Os年龄,并通过185Re计数利用相对法计算Re含量。本方法应用于测量13.26~2130 Ma的辉钼矿,Re-Os年龄的测定值与推荐值的相对偏差多数在0.36%~7.42%之间,由于放射性积累较多,长年龄样品测量的准确度较高。与传统Carius管法相比,该方法不需要加入稀释剂,省去了封闭和打开Carius管环节以及Re-Os分离纯化流程,适合于辉钼矿Re-Os年龄的初步分析。  相似文献   

9.
Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术   总被引:8,自引:0,他引:8  
本文介绍了Re-Os同位素定年的基本原理、技术发展及应用现状;综述了样品分解和Re-Os分离富集的主要方法,重点对ICP-MS法进行Re-Os同位素定年做了较详尽的介绍,包括质量分馏校正、干扰校正、含量初测、取样量的确定、稀释剂的稀释比及稀释剂加入量等,以确保高精度测试;评述了ICP-MS最常见的测定对象-辉钼矿中Re-Os的失耦现象及降低其对Re-Os同位素定年影响的对策,文中描述了由测定同位素比值计算含量时的误差传递公式并重申了最佳稀释比。最后,指出了Re-Os同位素定年方法研究中应该关注的工作方向。  相似文献   

10.
Dating of metallic ore deposits has been one of the problems concerned with by ore geologists for many years.The establishment of the Re-Os Isotope Laboratory at the Institute of Rock and Mineral Analysis,Chinese Academy of Geological Sciences, has provided us with a new technique to carry out geochronological studies of molybdenum ores.As one of the most important Re-bearing minerals, molybdenite contains almost no common osmium, but ^187Os was derived completely from decay of ^187Re, with ^187Os content as the function of Re content in the mineral .An ID-ICP-MS technique has been used in this study,and Re-Os isotopic ages of several large molybdenum deposits of differ-ent types from the East Qinling molybdenum belt have been determined.It is indicated that the Huanglongpu carbonatite vein-type molybdenum-(lead) deposit has a Re-Os age corresponding to Indosinian,while the rest porphyry-type molybdenum deposits and porphyry-skarn-type molybdenum-(tungsten) deposits have Re-Os ages corresponding to Yenshanian.  相似文献   

11.
新疆哈勒尕提铜铁矿床的成矿年代学研究   总被引:3,自引:0,他引:3  
首次采用锆石SHRIMP微区U-Pb测年技术,对新疆西天山哈勒尕提铜铁多金属矿床成矿岩体进行了年代学研究,通过对角闪石黑云母二长花岗岩中单颗粒锆石12个样品点的分析,获得206Pb/238U年龄介于362.7~381.7 Ma,加权平均值为(367.3±2.2)Ma,表明岩体的结晶年龄为晚泥盆世。通过ICP-MS法测定了哈勒尕提铜铁多金属矿床中的辉钼矿Re-Os同位素年龄,获得其模式年龄的加权平均值为(370.1±2.4)Ma,等时线年龄为(371±12)Ma,代表了哈勒尕提铜铁多金属矿床的成矿年龄。两种测年方法获得的年龄在误差范围内基本一致,因此该测试结果表明哈勒尕提铜铁多金属矿床与晚泥盆世角闪石黑云母二长花岗岩侵入作用密切相关,角闪石黑云母二长花岗岩为哈勒尕提铜铁多金属矿床的形成提供了成矿物质和热源。  相似文献   

12.
陕西洛南县石家湾钼矿Re-Os同位素年龄及地质意义   总被引:1,自引:0,他引:1  
陕西石家湾钼矿床位于东秦岭成矿带西段黄龙铺地区,钼矿化呈细脉-网脉状分布于花岗斑岩体及其围岩中,与矿化有关的围岩蚀变有钾长石化、硅化、绢云母化,属斑岩型矿床.在矿床中选取不同矿化类型的辉钼矿样品,进行了Re~Os同位素定年,获得模式年龄变化范围为143.1±2.1~145.1±2.2 Ma之间,其加权平均年龄(144.0±1.1 Ma,MSWD=0.91)、等时线年龄(145.4±2.1 Ma,MSWD=0.83)与石家湾斑岩体的成岩年龄(141.4±0.6Ma)相近,说明成岩成矿作用发生在晚侏罗世一早白垩世.综合辉钼矿中Re的含量、硫同位素以及相关岩体的源区特征等多方面证据认为,石家湾斑岩型钼矿的成矿物质主要来自于下地壳,并混有少量幔源成分.  相似文献   

13.
湘西大溶溪钨矿床中辉钼矿Re-Os同位素定年及其地质意义   总被引:9,自引:2,他引:7  
湘西大溶溪钨矿床,为雪峰隆起区内的一个中型白钨矿矿床。文章对该矿床中穿插钨矿体的含辉钼矿石英脉进行了Re-Os同位素年代学研究。分析结果显示,该矿中辉钼矿的Re-Os同位素模式年龄为217.0~221.1 Ma,平均为(219.0±1.2) Ma,其对应的等时线年龄为(223.3±3.9) Ma,揭示其形成于晚三叠世。这些年龄数据与矿区内大神山花岗岩的侵位时间〔(224.3±1.0) Ma〕基本吻合,表明该区含辉钼矿石英脉的形成与花岗岩的侵位具有密切的时、空联系。考虑到该区钨矿体的形成时间介于花岗岩和含辉钼矿石英脉之间,因此,推断大溶溪钨矿床形成于223 Ma左右。该研究成果,不仅为湘西雪峰隆起区存在多期次的钨成矿事件提供了可靠证据,同时又进一步证实了华南地区确实存在一次区域性的与印支期花岗岩有关的成矿作用。  相似文献   

14.
Re-Os isotopes were used to constrain the source of the ore-forming elements of the Tharsis and Rio Tinto mines of the Iberian Pyrite Belt, and the timing of mineralization. The pyrite from both mines has simila]r Os and Re concentrations, ranging between 0.05–0.7 and 0.6–66 ppb, respectively. 187Re/188Os ratios range from about 14 to 5161. Pyrite-rich ore samples from the massive ore of Tharsis and two samples of stockwork ore from Rio Tinto yield an isochron with an age of 346 ± 26 Ma, and an initial 187Os/188Os ratio of about 0.69. Five samples from Tharsis yield an age of 353 ± 44 Ma with an initial 187Os/188Os ratio of about 0.37. A sample of massive sulfide ore from Tharsis and one from Rio Tinto lie well above both isochrons and could represent Re mobilization after mineralization. The pyrite Re-Os ages agree with the paleontological age of 350 Ma of the black shales in which the ores are disseminated. Our data do not permit us to determine whether the Re-Os isochron yields the original age of ore deposition or the age of the Hercynian metamorphism that affected the ores. However, the reasonable Re-Os age reported here indicates that the complex history of the ores that occurred after the severe metamorphic event that affected the Iberian Pyrite Belt massive sulfide deposits did not fundamentally disturb the Re-Os geochronologic system. The highly radiogenic initial Os isotopic ratio agrees with previous Pb isotopic studies. If the initial ratio is recording the initial and not the metamorphic conditions, then the data indicate that the source of the metals was largely crustal. The continental margin sediments that underlie the deposits (phyllite-quartzite group) or the volcanic rocks (volcanogenic-sedimentary complex) in which the ores occur are plausible sources for the ore-forming metals and should constrain the models for the genesis of these deposits. Received: 15 March 1999 / Accepted: 26 July 1999  相似文献   

15.
The past decade has seen renewed interest in 187Re-187Os geochronology using a variety of matrices including sulfide minerals, shales and meteorites. The most widely used value of the 187Re decay constant (λ187Re) is 1.666 ± 0.005 × 10−11 a−1 (±0.31%), which is based on cross calibration of Re-Os and Pb-Pb chronometers for certain meteorites [Smoliar M. I., Walker R. J., and Morgan J. W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science271, 1099-1102]. However, other recent studies have yielded alternate values of λ187Re, based upon either direct counting experiments or analysis of meteorites. Here, we provide an independent assessment of λ187Re, using methodology, sample materials, and preparation of Os standard solutions different from those of Smoliar et al. (1996). Combining Re-Os age data for molybdenite formed in magmatic ore deposits, with the U-Pb zircon age of the magmatic rocks, a refined λ187Re value is determined by averaging 11 individual cross-calibration experiments spanning ca. 2700 Ma of Earth history. Using the U decay constants of Jaffey [Jaffey A. H., Flynn K. F., Glendenin L. E., Bentley W. C., and Essling A. M. (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev.4, 1889-1906], a value for λ187Re of 1.6668 ± 0.0034 × 10−11 a−1 is determined. Using the λ238U value of Jaffey et al. (1971) and λ235U value of Schoene [Schoene B., Crowley J. L., Condon D. J., Schmitz M. D., and Bowring S. A. (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta70, 426-445], a value for λ187Re of 1.6689 ± 0.0031 × 10−11 a−1 is determined. These values are nominally higher (ca. 0.1 and ca. 0.2%) than the value determined by Smoliar et al. [Smoliar M. I., Walker R. J., and Morgan J. W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science271, 1099-1102], but within calculated uncertainty. Further refinement of λ187Re by cross calibrating the molybdenite and U-Pb zircon chronometers should be possible by utilizing high precision, single-grain, chemical abrasion zircon U-Pb analyses.  相似文献   

16.
Using improved analytical techniques, which reduce the Re blanks by factors of 8 to 10, we report new Re-Os data on low Re and low PGE pallasites (PAL-anom) and IIIAB irons. The new pallasite samples nearly double the observed range in Re/Os for pallasites and allow the determination of an isochron of slope 0.0775 ± 0.0008 (T = 4.50 ± 0.04 Ga, using the adjusted λ187Re = 1.66 × 10−11 a−1) and initial (187Os/188Os)0 = 0.09599 ± 0.00046. If the data on different groups of pallasites (including the “anomalous” pallasites) are considered to define a whole-rock isochron, their formation would appear to be distinctly younger than for the iron meteorites by ∼60 Ma. Five IIIAB irons (Acuna, Bella Roca, Chupaderos, Grant, and Bear Creek), with Re contents ranging from 0.9 to 2.8 ppb, show limited Re/Os fractionation and plot within errors on the IIAB iron meteorite isochron of slope 0.07848 ± 0.00018 (T = 4.56 ± 0.01 Ga) and initial (187Os/188Os)0 = 0.09563 ± 0.00011. Many of the meteorites were analyzed also for Pd-Ag and show 107Ag enrichments correlated with Pd/Ag, requiring early formation and fractionation of the FeNi metal, in a narrow time interval, after injection of live 107Pd (t1/2 = 6.5 Ma) into the solar nebula. Based on Pd-Ag, the typical range in relative ages of these meteorites is ≤10 Ma. The Pd-Ag results suggest early formation and preservation of the 107Pd-107Ag systematics, both for IIIAB irons and for pallasites, while the younger Re-Os apparent age for pallasites suggests that the Re-Os system in pallasites was subject to re-equilibration. The low Re and low PGE pallasites show significant Re/Os fractionation (higher Re/Os) as the Re and PGE contents decrease. By contrast, the IIIAB irons show a restricted range in Re/Os, even for samples with extremely low Re and PGE contents. There is a good correlation of Re and Ir contents. The correlation of Re and Os contents for IIIAB irons shows a similar complex pattern as observed for IIAB irons (Morgan et al., 1995), and neither can be ascribed to a continuous fractional crystallization process with uniform solid-metal/liquid-metal distribution coefficients.  相似文献   

17.
Two Re-Os dating reference material molybdenites were prepared. Molybdenite JDC and molybdenite HLP are from a carbonate vein-type molybdenum-(lead)-uranium deposit in the Jinduicheng-Huanglongpu area of Shaanxi province, China. The samples proved to be homogeneous, based on the coefficient of variation of analytical results and an analysis of variance test. The sampling weight was 0.1 g for JDC and 0.025 g for HLP. An isotope dilution method was used for the determination of Re and Os. Sample decomposition and pre-concentration of Re and Os prior to measurement were accomplished using a variety of methods: acid digestion, alkali fusion, ion exchange and solvent extraction. Negative thermal ionisation mass spectrometry and inductively coupled plasma-mass spectrometry were used for the determination of Re and 187Os concentration and isotope ratios. The certified values include the contents of Re and Os and the model ages. For HLP, the Re content was 283.8 ± 6.2 μg g−1, 187Os was 659 ± 14 ng g−1 and the Re-Os model age was 221.4 ± 5.6 Ma. For JDC, the Re content was 17.39 ± 0.32 μg g−1, 187Os was 25.46 ± 0.60 ng g−1 and the Re-Os model age was 139.6 ± 3.8 Ma. Uncertainties for both certified reference materials are stated at the 95% level of confidence. Three laboratories (from three countries: PR. China, USA, Sweden) joined in the certification programme. These certified reference materials are primarily useful for Re-Os dating of molybdenite, sulfides, black shale, etc.  相似文献   

18.
石灰岩铼-锇同位素分析方法研究及应用初探   总被引:2,自引:2,他引:0  
针对石灰岩样品Re-Os同位素分析,在选样和溶样方法上进行了改进,在Carius管封闭前加入HCl与石灰岩反应释放出大量CO2,然后加入氧化剂和稀释剂封闭Carius管溶解样品,大大增加了样品取样量。利用改进的方法对采自青海玉树地区二叠世九十道班组底部的灰黑色微细晶灰岩的Re-Os同位素体系进行了分析测定,得到了精确的沉积年龄(283.1±7.1)Ma(MSWD=0.61,Model1,n=7)。187Os/188Os同位素初始值为0.56±0.12,与二叠纪时海水的187Os/188Os值相一致,反映了石灰岩沉积时海水的187Os/188Os比值。所得石灰岩年龄与其中的生物化石年龄相吻合,并且与区域上岩浆岩锆石年龄相互印证,表明Re-Os同位素体系在该石灰岩中的封闭性较好。通过石灰岩中有机碳含量以及其中Re、Os含量关系研究,得出了Re、Os在灰岩中主要赋存于有机质中的结论。从原理上解释了Re-Os同位素体系在灰岩中的应用具有十分广泛的前景。  相似文献   

19.
Analysis of 12 worldwide oil samples show that Re and Os abundances are positively correlated with the asphaltene content of oil. Light oils with <1% asphaltene content have basically no measurable Re or Os. Within oil, Re and Os are present dominantly in the asphaltene fraction (>83%), with <14% Re and Os found in the maltene fraction, this distribution is similar to other trace metals such as V and Mo. Rhenium and Os could be present in oil as metalloporphyrin complexes, but given their abundance in the asphaltene component they are also likely bound by heteroatomic ligands. The 187Re/188Os and 187Os/188Os values in asphaltene calculated at the estimated time of oil generation (Osi) are similar to those of the whole oil, as expected from the elemental results. This suggests that the asphaltene fraction can be used to approximate the Re-Os isotopic compositions of the whole oil. Os isotopic compositions in oils show a considerable range, from 187Os/188Os of 1.9-6.0, and they correlate positively with the age of the proposed source rock. Re/Os ratios also show a large range and overlap the Re/Os ratios found in typical oil source rocks such as organic rich shale.  相似文献   

20.
湖南鲁塘石墨矿Re-Os同位素研究   总被引:5,自引:1,他引:4  
石墨具有较高的Re、Os含量,可望成为理想的Re-Os同位素测年对象,但迄今国内外研究较少,尤其在煤层经变质作用形成石墨过程中,其中Re-Os同位素体系的变化还有待研究。湖南鲁塘石墨矿是我国典型的隐晶质石墨矿床之一,矿体产于二叠系龙潭组煤系地层中。本文采用Carius管逆王水溶解样品,直接蒸馏、微蒸馏分离纯化Os,丙酮萃取法分离富集Re,热表面电离质谱法对鲁塘矿区石墨样品以及外围原煤进行了Re-Os同位素分析。结果表明:鲁塘石墨的Re含量为0.901~9.794 ng/g,Os含量为7.3~189.5 pg/g,Re-Os同位素等时线年龄为155.6±3.6 Ma,该年龄与鲁塘石墨矿东侧骑田岭岩体第二阶段中粒黑云母花岗岩锆石U-Pb年龄153~157 Ma一致,表明了龙潭组煤层受到骑田岭岩体"烘烤"作用,发生热接触变质作用,使得靠近骑田岭岩体原煤变质为石墨,形成石墨矿床。通过对比石墨、原煤和骑田岭岩体Re、Os含量及比值,发现石墨中的Re、Os主要来源于原煤,并根据石墨Re-Os等时线初始(187Os/188Os)i值(0.686±0.032),推测骑田岭岩体在侵入煤系地层过程中,有少量具有较低187Os/188Os值的Os被碳质吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号