首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Pallasites are highly differentiated meteorites and provide a unique sample from the deep interiors of solar system parent bodies. They contain evidence of the former existence of one or more residual melts. Olivine is a major phase. Its primary shape is rounded; the angular crystals in many pallasites are secondary. Tubular inclusions are widespread. They perhaps are the residence of CO2, released during laboratory heating experiments. Phosphoran olivine, a new variety of olivine containing 4–5 wt% P2O5, occurs in a few pallasites. Its Fe/Mg ratio is apparently independent of the host olivine composition.Pyroxene (not previously described from pallasites) occurs in symplectic intergrowths in seven meteorites. Compositionally, it lies in the gap between pyroxenes in chondrites and most irons. There are two groups: Fs11.6 ± 0.2 and Fs16.7 ± 0.2 The pyroxene contains exceptionally low Ca (< 0.1–0.2 wt%) and there is an indication of an inverse relation between Fe and Ca.Modal analyses and density measurements were made on all available specimens and bulk compositions were calculated. The ‘average’ pallasite contains 65 vol. % olivine and 50.5 wt % total Fe. Many of the densities of pallasites cluster around that calculated for close-packed olivine.Pallasites are exotic cumulates. Their textures resemble terrestrial cumulates, as does the presence of olivine and chromite. The metal texture resembles a solidified intercumulus liquid. Those pallasites containing olivine in excess of close-packing were subjected to adcumulus growth, thereby also explaining the widespread mutual borders.There is abundant evidence of deformation. For olivines this includes their fragmental shape and kink banding. Troilite formed a eutectic-like melt with kamacite: pieces of spalled olivine and schreibersite were injected into and captured by this melt. Troilite polycrystallinity resulted from the deformation. This deformation occurred while the pallasites were still deeply buried, resulting in incipient spheroidization of olivine fragments, including the formation of elongate, rounded crystals. A later, lower temperature deformation disrupted plessite.Pallasites formed in multiple parent bodies by processes that recurred in several places within the solar system, as shown by the mineralogical and textural similarities between pallasites that differ in their isotopic and trace element compositions. Type IIIB irons still seem the most likely associated meteorites.Two new pallasites, Dora and Rawlinna, are described briefly.  相似文献   

2.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

3.
The Chassigny meteorite is a moderately shocked olivine achondrite or chassignite with features indicative of a cumulate origin with some subsolidus annealing. Chassigny is an iron-rich dunite (Fo68) with minor amounts of Ca-rich and Ca-poor pyroxene, alkalic feldspar, chromite, and melt inclusions in olivine. Accessory phases include chlorapatite, troilite, marcasite, kaersutite amphibole, pentlandite, ilmenite, rutile and baddeleyite. The meteorite experienced shock pressures of ~150–200 kbar as evidenced by planar and irregular fractures in olivine, local recrystallization in pyroxene and reduced birefringence and rare deformation lamallae in feldspar. Kaersutitic amphibole (K0.05 Na0.45)0.50 (Ca1.71 Na0.29)2.00 (Mg2.73 ‘Fe’1.19 Ti0.73 A10.23 Cr0.08 Mn0.03)4.99 (Si6.05Al1.95)8.00 O22 (OH, F)2 containing hydrogen and lesser amounts of fluorine represents the first extraterrestrial occurrence of hydrous amphibole and the first meteoritic amphibole type other than fluorichterite. Kaersutite is found only in melt inclusions.Melt inclusion bulk compositional data suggest crystallization from a low-Ca melt that may have been similar in major element abundances to the silicate portion of LL group chondrites. However, Chassigny has a fractionated pattern for REE and the lack of metallic iron, possible presence of minor Ni in the olivine and Fe3+ in the chromites indicates that Chassigny formed under relatively more oxidizing conditions than most other achondrites. Therefore its parental melt could not have been directly derived from a chondritic composition in a simple single-stage process. The iron-rich bulk composition, cumulate texture and abundance as well as alkalic nature of the interstitial feldspar indicate that Chassigny could not have generated eucritic magmas. This places further constraints on its relationship to other meteorites and the parent body from which it is derived. The Brachina meteorite is similar to Chassigny except that it is finer grained, more feldspathic and is unshocked. It extends the fractionation range of this group which now represents two unusual meteorites.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987113000893   总被引:1,自引:0,他引:1  
Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis.  相似文献   

5.
Although acapulcoites and lodranites played a key role in understanding partial differentiation of asteroids, the lack of samples of the chondritic precursor limits our understanding of the processes that formed these meteorites. Grove Mountains (GRV) 020043 is a type 4 chondrite, with abundant, well-delineated, pyroxene-rich chondrules with an average diameter of 690 μm, microcrystalline mesostasis, polysynthetically striated low-Ca pyroxene, and slightly heterogeneous plagioclase compositions. Similarities in mineralogy, mineral composition, and oxygen isotopic composition link GRV 020043 to the acapulcoite-lodranite clan. These features include a high low-Ca pyroxene to olivine ratio, high kamacite to taenite ratio, and relatively FeO-poor mafic silicates (Fa10.3, Fs10.4) relative to ordinary chondrites, as well as the presence of ubiquitous metal and sulfide inclusions in low-Ca pyroxene and ƒO2 typical of acapulcoites. GRV 020043 shows that evidence of partial melting is not an essential feature for classification within the acapulcoite-lodranite clan. GRV 020043 experienced modest thermal metamorphism similar to type 4 ordinary chondrites. GRV 020043 suggests a range of peak temperatures on the acapulcoite-lodranite parent body similar to that of ordinary chondrites, but shifted to higher temperatures, perhaps consistent with earlier accretion. The mineralogy and mineral compositions of GRV 020043, despite modest thermal metamorphism, suggests that most features of acapulcoites previously attributed to reduction were, instead, inherited from the precursor chondrite. Although partial melting was widespread on the acapulcoite-lodranite parent body, ubiquitous Fe,Ni-FeS blebs in the cores of silicates were not implanted by shock or trapped during silicate melting, but were inherited from the precursor chondrite with subsequent overgrowths during metamorphism.  相似文献   

6.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

7.
Northwest Africa (NWA) 12379 is a new metal-rich chondrite with unique characteristics distinguishing it from all previously described meteorites. It contains high Fe,Ni-metal content (∼ 70 vol.%) and completely lacks interchondrule matrix; these characteristics are typical only for metal-rich carbonaceous (CH and CB) and G chondrites. However, chondrule sizes (60 to 1200 μm; mean = 370 μm), their predominantly porphyritic textures, nearly equilibrated chemical compositions of chondrule olivines (Fa18.1–28.3, average Fa24.9±3.2, PMD = 12.8; Cr2O3 = 0.03 ± 0.02 wt.%; FeO/MnO = 53.2 ± 6.5 (wt.-ratio); n = 28), less equilibrated compositions of low-Ca pyroxenes (Fs3.2–18.7Wo0.2–4.5; average Fs14.7±3.7Wo1.4±1.3; n = 20), oxygen-isotope compositions of chondrule olivine phenocrysts (Δ17O ∼ 0.2–1.4‰, average ∼ 0.8‰), and the presence of coarse-grained Ti-bearing chromite, Cl-apatite, and merrillite, all indicate affinity of NWA 12379 to unequilibrated (type 3.8) ordinary chondrites (OCs). Like most OCs, NWA 12379 experienced fluid-assisted thermal metamorphism that resulted in formation of secondary ferroan olivine (Fa27) that replaces low-Ca pyroxene grains in chondrules and in inclusions in Fe,Ni-metal grains. Δ17O of the ferroan olivine (∼ 4‰) is similar to those of aqueously-formed fayalite in type 3 OCs, but its δ18O is significantly higher (15–19‰, average = 17‰ vs. 3―12‰, average = 8‰, respectively). We suggest classifying NWA 12379 as the ungrouped metal-rich chondrite with affinities of its non-metal fraction to unequilibrated OCs and speculate that it may have formed by a collision between an OC-like body and a metal-rich body and subsequently experienced fluid-assisted thermal metamorphism. Trace siderophile element abundances and isotopic compositions (e.g., Mo, Ni, Fe) of the NWA 12379 metal could help to constrain its origin.  相似文献   

8.
A study was undertaken to determine the chronology, petrogenesis and relationships among the shergottites, Shergotty and Zagami and the unique achondrite ALHA77005. These meteorites are the product of a variety of complex processes.Petrogenesis: Chondrite-normalized abundance patterns of Shergotty and Zagami are very similar and show pronounced depletions of both the light REE (La-Nd) and heavy REE (Dy-Lu) relative to Sm-Gd. These characteristic depletions are even more pronounced for ALHA77005. The light REE depletion is qualitatively consistent with the presence of cumulus pyroxene and/or olivine in these meteorites, but trace element models show that the parental magmas of all three meteorites were probably also light REE depleted. Both trace element model calculations and combined Rb-Sr and Sm-Nd isotopic systematics show that the meteorites could not have been co-magmatic nor can ALHA77005 be representative of the source material of the shergottites. Light REE depletion of the parental magmas also implies light REE depletion of the source material. The Sm-Nd systematics of the shergottites require a time-averaged sub-chondritic (light REE enriched) Sm-Nd ratio since 4.6 AE ago. The Sm-Nd systematics of ALHA77005 permit a time-averaged super-chondritic (light REE depleted) Sm/Nd ratio if its crystallization age is less than TICE = 0.72 AE.Chronology. Rb-Sr internal isochrons for all three meteorites and a Sm-Nd internal isochron for Zagami are concordant at ~ 180 Myr. 39Ar-40Ar plateau ages of Shergotty and Zagami maskelynite are ~250–260 Myr. These ages apparently reflect resetting of these isotopic systems by shock metamorphism which converted the feldspar to maskelynite. The concordance of these ages suggests a single shock event during which the meteorites were in close physical proximity. The time of this event is most precisely given by the Rb-Sr age of 180 ± 4 Myr for Zagami.The crystallization ages of the meteorites were not precisely determined. Extreme upper limits are determined by Sm-Nd model ages relative to an eucrite initial 143Nd144Nd = 0.505835 at 4.6 AE ago. These model ages for Shergotty, Zagami and ALHA77005 are 3600, 3500 and 2850 Myr, respectively. The Sm-Nd whole rock age of 1340 ± 60 Myr for the three meteorites gives the crystallization age if the Sm/Nd ratios of the precursor materials were always the same. We consider this 1340 Myr age as a “best estimate” upper limit. “Best estimate” lower limits for Shergotty and Zagami are taken from the average 39Ar-40Ar ages of 1200 and 900 Myr of pyroxene separates. The average 39Ar-40Ar age of a whole rock sample of ALHA77005 was 1600 Myr and can be partitioned between a low temperature (feldspar) phase and a high temperature (olivine + pyroxene + inclusions) “phase”. The average apparent 39Ar-40Ar age of the low temperature phase is ~1050 Myr, which is chosen as the “best estimate” lower limit to the age. The crystallization ages of Shergotty, Zagami and ALHA77005 probably lie within the ranges of 1200–1300, 900–1300 and 1000–1300 Myr, respectively. The Rb-Sr whole rock age of 4400 ± 400 Myr and single-stage BABI model ages of ~4800–5100 Myr are interpreted as reflecting differentiation of the parent body at ~4600 Myr ago.The complex geochemical and isotopic evolution recorded by these meteorites suggests a geologically active parent body capable of sustaining melting at two or more epochs in its history.  相似文献   

9.
As previously found for a chondritic inclusion of unknown affinity, mineralogic and petrologic properties of 9 inclusions in the Cumberland Falls enstatitc achondrite are primitive members of the forsterite (F) chondrite group, hitherto defined by 4 meteorites of similar redox state. The inclusions define a primitive suite with properties indicating 8 as F3 and one of even lower petrologic type. The abundant minerals include: low-Ca pyroxene, olivine, plagioclase, kamacite, taenite, schreibersite, troilite, ferroan alabandite and daubreelite. Diopside, oldhamite and a Ti-rich sulfide are present in one or two inclusions. Petrologic textures and jadeitic pyroxene, hitherto unidentified in meteorites, indicate substantial degree of shock. The inclusions acquired their chemical characteristics during nebular condensation and accretion over a broad redox range (metal-silicate trends in them verify Prior's Rules): their parent body later impacted the enstatite meteorite parent body. During impact, the inclusions were shocked and incorporated with enstatite achondrite host as a breccia that would become Cumberland Falls.  相似文献   

10.
The eucritic meteorites are basaltic rocks that originate from the upper part of the crust of some small bodies as exemplified possibly by asteroid 4-Vesta. A few eucrites appear to have been modified by different degrees of a late stage alteration process that caused significant variations in mineralogy. Three distinct alteration stages are identified: (1) Fe-enrichment along the cracks that cross cut the pyroxene crystals (“Fe-metasomatism”); secondary olivine and minute amounts of troilite are found only occasionally in cracks at this stage; (2) deposits of Fe-rich olivine (Fa64-86) and minor amounts of troilite are frequent inside the cracks; sporadic secondary Ca-rich plagioclase (An97-98) is associated with the fayalitic olivine; (3) at this stage, the Fe-enrichment of the pyroxene is accompanied by a marked Al-depletion; moreover, secondary Ca-rich plagioclase is more frequent and partly fills some cracks or rims of the primary plagioclase crystals. The composition of the secondary phases on one hand, the lack of incompatible trace element enrichment in the metasomatized pyroxenes on the other hand, rule out a silicate melt as the metasomatic agent. Although no hydrous phase has been yet identified in the studied samples, aqueous fluids are plausible candidates for explaining the deposits of ferroan olivine and anorthitic plagioclase inside the fractures of the studied unequilibrated eucrites.  相似文献   

11.
In 2013, Chang'E-3 program will develop lunar mineral resources in-situ detection. A Visible and Near-infrared Imaging Spectrometer (VNIS) has been selected as one payload of CE-3 lunar rover to achieve this goal. It is critical and urgent to evaluate VNIS' spectrum data quality and validate quantification methods for mineral composition before its launch. Ground validation experiment of VNIS was carried out to complete the two goals, by simulating CE-3 lunar rover's detection environment on lunar surface in the laboratory. Based on the hyperspectral reflectance data derived, Correlation Analysis and Partial Least Square (CA-PLS) algorithm is applied to predict abundance of four lunar typical minerals (pyroxene, plagioclase, ilmenite and olivine) in their mixture. We firstly selected a set of VNIS' spectral parameters which highly correlated with minerals' abundance by correlation analysis (CA), and then stepwise regression method was used to find out spectral parameters which make the largest contri- butions to the mineral contents. At last, functions were derived to link minerals' abundance and spectral parameters by partial least square (PLS) algorithm. Not considering the effect of maturity, agglutinate and Fe~, we found that there are wonderful correlations between these four minerals and VNIS' spectral parameters, e.g. the abundance of pyroxene correlates positively with the mixture's absorption depth, the value of absorption depth added as the in- creasing of pyroxene's abundance. But the abundance of plagioclase correlates negatively with the spectral parame- ters of band ratio, the value of band ratio would decrease when the abundance of plagioclase increased. Similar to plagioclase, the abundance of ilmenite and olivine has a negative correlation with the mixture's reflectance data, if the abundance of ilmenite or olivine increase, the reflectance values of the mixture will decrease. Through model validation, better estimates of pyroxene, plagioclase and ilmenite's abundances are given. It is concluded that VNIS has the capability to be applied on lunar minerals' identification, and CA-PLS algorithm has the potential to be used on lunar surface's in-situ detection for minerals' abundance prediction.  相似文献   

12.
Eucrites are extraterrestrial plagioclase-pigeonite basalts. Experimental studies suggest that they were produced by partial melting of an olivine (Fo65)-pigeonite (Wo5En65)-plagioclase (An94)-spinel-metal source region. Quantitative modeling of the evolution of REE abundances in the eucrites indicates that the main group of eucrites (e.g. Juvinas) may be produced by approximately 10% equilibrium partial melting of a source region with initial REE abundances which were chondritic relative and absolute. Other eucrites appear to represent greater (e.g. Sioux County—15%) or smaller (e.g. Stannern—4%) degrees of melting. Moore County and Serra de Magé appear to be cumulates of pyroxene and plagioclase produced by fractional crystallization of a Juvinas-like melt. Nuevo Laredo may represent a residual liquid after such fractional crystallization. Our calculations are consistent with the conclusion that the eucrites were derived from a single type of source region. The close correspondence of the age of the eucrites (? 4.6 AE) to the age of the solar system appears to preclude the possibility of extensive chemical differentiation of the eucrite parent body prior to the event which produced the eucritic melts. Thus our calculations have yielded not only the mode of the source region but, assuming homogeneous accretion, the mode and hence the bulk composition of the eucrite parent body as well. We are unable to estimate quantitatively the ratio of metal to olivine in the parent body. If no metal is present, the bulk composition (in oxide wt%) is Na2O—0.04, MgO—29.7, Al2O3—1.8, SiO2—39.0, CaO—1.2, FeO—28.3. If, in contrast, the parent body contained 30% metal, the bulk composition of the silicate portion of the eucrite parent body is Na2O—0.06, MgO—28.0, Al2O3—2.6, SiO2—41.3, CaO—1.9, FeO—26.3. Relative abundances of the meteorites suggest that the eucrite parent body is still intact. The solar system object most closely resembling the eucrites is asteroid 4 Vesta. Because Vesta is unique among the asteroids, we have license to conclude that it is the source of the eucrites and its bulk composition is close to the analyses given above.  相似文献   

13.
Shergottites contain cumulus pigeonite and augite, probably without cumulus plagioclase and crystallized under relatively oxidizing conditions. Shergotty and Zagami may differ in the relative proportions of cumulus pyroxenes and crystallized intercumulus liquid, but the compositions of pyroxenes and liquid are similar in both meteorites. Absence of olivine in melting experiments suggests that the shergottites crystallized from fractionated derivatives of primary liquids. Low-Ca pyroxene and augite apparently began to crystallize from these primary liquids prior to plagioclase. Shergottites can be readily distinguished from other achondrite groups by their mineralogies, crystallization sequences and inferred source region compositions. However, the source regions of the shergottites may be related to those of other achondrite types by addition or loss of volatile components.The bulk composition of the Earth's upper mantle overlaps that of permissible shergottite source regions. Shergottites and terrestrial basalts display similarities in oxidation state and concentrations of trace and minor elements with a wide range of cosmochemical and geochemical affinities. Accretion of similar materials to produce the terrestrial upper mantle and the shergottite parent body or accretion of the Earth's upper mantle from planetesimals similar to the shergottite parent body may account for many of their similarities. Models of the origin of the Earth's upper mantle which attribute its oxidation state, its siderophile element abundances and its volatile element abundances to uniquely terrestrial processes or conditions, or to factors unique to the origin and differentiation of large bodies, are unattractive in light of the similarities between shergottites and terrestrial basalts.  相似文献   

14.
San Cristobal is an unusual group IB ataxite with 25 per cent Ni, composed of taenite grains 2–3 cm in diameter and silicate-troilite-graphite nodules concentrated on the grain boundaries. Silicate compositions are typical of group IAB: olivine Fa3.3, orthopyroxene Fs6.9 and feldspar Ab88. Plagioclase shows peristerite unmixing, previously unrecorded in meteorites, and occasional K-rich feldspar grains have an unusual antiperthite exsolution. Brianite Na2CaMg(PO4)2 and haxonite (Fe, Ni)23C6 are common in nodules and matrix, respectively, while cohenite is rare. Part of the matrix contains a pearlitic kamacite precipitate instead of the usual oriented platelets.San Cristobal has extreme concentrations of many elements; e.g. the highest published Ag, Cu, In and Sb contents and the lowest Mo and Pt in irons. These data and the mineralogy show that San Cristobal has many characteristics of both groups IB and IIID, but that it fits group IB trends better. Ratios of refractory element abundances to those in Cl chondrites (both normalized to Ni) decrease through IB from l in IA to 0.03 in San Cristobal, but the other siderophilic elements have a small range of abundance ratios, 0.5–2, throughout IAB. We suggest that IB grains either formed in a part of the solar nebula where refractories had been previously removed, or else failed to equilibrate with a refractory-rich, high-temperature condensate. After condensation of the volatiles, Fe was partially removed, perhaps by oxidation. Group IIICD seems to have experienced similar fractionations. Unlike other iron meteorite groups, neither IAB nor IIICD appears to have been fully molten.  相似文献   

15.
The basaltic achondrite, shergottite, nakhlite, and chassignite meteorites appear to define a petrological and geochemical sequence. Assuming that they developed from basaltic liquids produced by low pressure partial melting of plagioclase peridotites, their petrological and chemical distinctions can be understood in terms of the compositional differences between their source periodites. The source regions of basaltic achondrite magmas were alkali-poor, metal-bearing peridotites in which pigeonite and/or orthopyroxene was the only pyroxene. By simultaneously increasing the ratio of high-Ca pyroxene to low-Ca pyroxene, the alkali content of the feldspar, the oxidation state, and the overall volatile content of the basaltic achondrite source peridotite, peridotites capable of yielding the parent liquids of the shergottites can be produced. Further increases can produce peridotites capable of yielding the parent liquids of the nakhlites and chassignites.Addition of a volatile-rich component to the volatile-poor type of peridotite required for the source regions of the eucrites appears to be capable of producing the required series of peridotites. Alternatively, progressive volatile-loss from a volatile-rich material, possibly of roughly cosmic composition, could have produced this sequence of peridotites. A simple two-component model of planetary compositions is, to a first approximation, consistent with the petrology and chemistry of these igneous meteorite groups.  相似文献   

16.
A characteristic feature of ureilite meteorites is reduction of FeO. But the reduction is usually confined to the rims of olivine. In the LAR 04315, LAP 03587 and Almahata Sitta ureilites, pyroxene was extensively reduced by impact smelting. In LAR 04315, the impact caused nearly all of the original pigeonite to melt or otherwise become sufficiently structurally compromised to allow smelting, and yet a minor proportion of the pyroxene escaped smelting and survived with its original composition (En74.1Wo10.2). Olivine mosaicism confirms that LAR 04315 experienced a major shock event. The smelted pyroxenes also show a distinctive patchiness in their interference colors (although each grain’s basic optical continuity, often including twinning, is still discernible). They also have reduced compositions, are ubiquitously porous (∼15%), and contain sprinklings of Fe-metal and felsic glass. For the most part the olivine underwent only very slight reduction. Much of the (small) pyroxene component of LAP 03587 shows the same oddly porous texture. LAR 04315 also contains large traces of silica and felsic glass (with a typical composition of, in wt%, 61 SiO2, 23 Al2O3, 11 CaO, 3.7 Na2O) glass; these two phases together form selvages that line the walls of many of the largest voids in the rock. Silica is a by-product of pyroxene smelting. The felsic glass probably derives largely from interstitial basaltic melt that predated the impact. However, the comparatively stiff surrounding/included silica may have promoted unusually high melt retention within LAR 04315 through the smelting episode (one aspect of which was a major stream-out, through the same large voids, of COx gas). The impact-smelted pyroxene of LAP 03587 is enigmatic because this ureilite also features little-shocked euhedral graphite laths and no olivine mosaicism. The fine-grained ureilitic component of Almahata Sitta appears to have likewise formed by impact smelting, but with more extensive melting of pyroxene (especially a Ca-rich pyroxene component), more pulverization and melting of olivine, and more displacement of both. However, in places the original coarse-equant ureilite texture is still discernible in relict form. Ordinarily, an impact shock melts olivine before, or at least no later than, pyroxene. But in the case of LAR 04315 and LAP 03587, the great shock event evidently occurred when the material was already anatectic or very nearly so; and thus the difference in melting temperature between pyroxene and olivine, ∼300 degrees lower for pyroxene, was decisive. If literature inferences of extremely fast cooling rates, implying shallow burial depths, are accurate, the proportion of COx gas generated by ureilite smelting exceeded by a very large factor (of order 103 but possibly much greater) the volume represented as porosity in the final ureilites. The outflow of so much gas may have, by near-surface explosive expansion and jetting, enhanced the thoroughness of the impact-triggered catastrophic impact disruption of the parent asteroid.  相似文献   

17.
南极月球陨石MIL05035矿物学、岩石学及演化历史   总被引:1,自引:0,他引:1  
月球陨石MIL05035岩石类型上属于普通辉石低钛玄武岩,粗粒辉长结构,无角砾化。主要矿物为辉石(60.2%)、斜长石(27.3%)和橄榄石(6.05%),次要矿物为石英(4.36%)、钛铁矿(1.25%)和陨硫铁(0.84%),含极少量富Ti、Fe尖晶石和磷灰石,广泛发育由钙铁辉石+铁橄榄石+石英组成的后成合晶三相集合体。辉石颗粒具有明显的化学成分不均匀性和出溶片晶,核部相对贫铁钙富镁(Fs30.2-60.8Wo14.2-35.0),边部富铁钙贫镁(Fs47.5-64.9Wo22.8-44.3)。熔长石化斜长石具有微弱的成分环带,边部相对富碱金属元素(Ab9.3-12.3,Or0.31-1.03),核部则相反(Ab7.6-10.6,Or0.12-0.36),含有未熔长石化的残留斜长石。橄榄石具有粗晶橄榄石(Fa95.5-96.6)和后成合晶中细粒橄榄石(Fa88.9-93.5)两种产状。石英具有脉状、团块状和蠕虫状等产状:脉状石英大部分转变为二氧化硅玻璃,核部石英具有较宽的拉曼谱特征峰(448~502cm-1),证明其经历了冲击变质与退变质作用;团块状石英分布于粗粒橄榄石颗粒间或橄榄石与斜长石和辉石接触边界上,与斜长石构成充填结构;蠕虫状石英分布于细粒后成合晶中。粗粒辉石边部铁辉石和后成合晶中辉石成分的继承性、结构上的延续性、光学特征上的冲击暗化现象、与冲击熔脉结构上的相关性和后成合晶中发育与粗粒辉石方向几乎一致的解理等方面的证据,认为后成合晶可能由于铁辉石在冲击压力释放与温度降低后的退变质作用下分解形成。根据岩石矿物结构观察、成分分析和MELTS模拟表明该陨石母岩的岩浆演化过程可能为:母岩浆在温度降低后首先产生极少量钛铁尖晶石、其次是普通辉石和钙长石先后结晶;随着温度下降,贫钙铁普通辉石、铁钙铁辉石和铁普通辉石等在普通辉石边部大量结晶,钙长石边部分异结晶少量培长石或拉长石;随着温度继续下降,早期结晶的普通辉石析出易变辉石等出溶片晶,橄榄石在辉石和斜长石边部结晶;其后,钛铁矿和陨硫铁析出,石英沿橄榄石和钙长石等先结晶矿物裂隙充填。出露月表后强烈的冲击变质作用使斜长石几乎全部转变为熔长石、石英大部分转变为二氧化硅玻璃,并具有一系列面状变形,冲击熔脉发育,冲击变质程度至少为S5。本研究为月球的岩浆演化和冲击变质过程提供了重要证据。  相似文献   

18.
Based on 51 wholerock analyses by XRF and summation over the layered group, the Kiglapait Intrusion contains 4.7?1.6+1.2 ppm Y, which resides principally in augite and apatite. Using liquid compositions calculated by summation, the partition coefficient DAUG/LY is 0.95 ± 0.12 from 84 to 97 PCS (percent solidified) and 1.5 ± 0.4 above 97 PCS. For feldspar, the most likely value for D is 0.028 ± 0.02 (N = 6).REE analyses for 13 whole rocks were interpreted with the aid of yttrium models to yield trends for wholerocks and liquids vs PCS. Summations over the rocks of the layered group gave La = 2.5, Ce = 5.8, Nd = 3.9, Sm = 1.0, Eu = 0.8, Tb = 0.17, Yb = 0.37, and Lu = 0.06 ppm, with 2 s.d. errors near ± 30%. All these elements are highly incompatible until the arrival of augite, which affects chiefly the HREE, and apatite, which affects all (but more strongly, the LREE). The net result is that after apatite arrival at 94 PCS, the liquid compositions are nearly constant, hence DWR/LREE ≈ 1.0. These results are compatible with the mineralogy of the intrusion and the estimated partition coefficients for feldspar, olivine, augite, apatite, and Fe-Ti oxide minerals. For pre-apatite liquids, DFSP/LREE vary regularly with the normative di content of the liquid and change by an order of magnitude, hence the bulk liquid composition must be considered in any attempt to invert the compositions of feldspars to parent liquids.The Eu anomaly at first decreases in Kiglapait liquids due to plagioclase fractionation, but then increases due to removal of augite and apatite with negative Eu anomalies. The features dominantly responsible for Eu partitioning are liquid structure and, for monoclinic ternary feldspars, crystal structure. The former is best monitored by the augite or diopside content of the liquid and the latter, by the K content of the feldspar.The chondrite-normalized REE pattern for the intrusion has LaN = 7.4, LuN = 1.6, (Ce/Yb)N = 3.6, and Eu/Eu* = 2.4, indicating its feldspar-rich nature. The chilled margin of the nearby Hettasch Intrusion has a similar but more evolved pattern, corresponding roughly to the Kiglapait liquid at 70 PCS. As with other data, those for the REE suggest source differences for the two intrusions rather than a relationship due to fractionation.  相似文献   

19.
C3(O) chondrites comprise a metamorphic sequence. The following order reflects increasing grade: Kainsaz. Felix. Ornans. Lance. Isna, Warrenton. Assignment of Karoonda to the Ornans subtype is uncertain, but it is certainly of higher petrologic type than C3. Average olivine and pyroxene compositions in the metamorphic sequence change progressively from Fo12. Fs3 to Fo34, Fs11, respectively, and per cent mean deviation decreases. Kamacite and taenite change composition with increasing grade, reflecting higher equilibration temperatures. Blurring of textural features and Fe/Mg exchange between matrix and inclusions are also evident. As in the ordinary chondrites. contents of rare gases and possibly volatiles correlate with degree of metamorphism, but the effects are small. The meteorite Ornans presents an intriguing paradox. Observed chemical enrichment and depletion patterns reflect a higher metamorphic grade than do petrographic properties. The data suggest that abundance patterns of volatile components were not generated by metamorphism, but may represent primary differences. Strong correlations present in other C3(O) chondrites indicate some genetic link between metamorphism and composition, although the relationship is probably not causal. The autometamorphism model of Larimer and Anders (1967) appears to be the most straightforward explanation, but an observed negative correlation between the amount of matrix and content of volatiles suggests a re-examination of the two-component model. The decoupling mechanism required for Ornans is uncertain.  相似文献   

20.
Melt inclusions in olivine and pyroxene phenocrysts in kersantite and camptonite at Chhaktalao in Madhya Pradesh, India are mainly of the evolved type forming daughter minerals of olivine, pyroxene, plagioclase, spinel, mica, titanomagnetite and sulphides. Heating studies exhibit a temperature range from 1215° to 1245°C for the melt inclusions in olivine in camptonite and 1220–1245°C for olivine in kersantite. The temperature for melt inclusions in pyroxene ranged from 1000° to 1150°C in camptonite and 850–1100°C for pyroxene in kersantite. The bubble inside these melt inclusions is mainly CO2. The Th°C of CO2 into liquid phase occurred between 26° and 31°C in olivine and 25–30°C in pyroxene from kersantite and camptonite. The maximum density estimated is 0.72 g/cm3 and the minimum is 0.45 g/cm3. The depth of entrapment of the melt inclusion is estimated between 10–15 km. The pressure of entrapment of melt inclusion in olvine is 4.6 kbar where as that in pyroxene is 3.7 kbar. The lamprophyres in the Chhaktalao area are considered to be derived from low depth and low pressure region, possibly within spinel lherzolite zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号