首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
The abundance and isotopic composition of Hg was determined in bulk samples of both the Murchison (CM) and Allende (CV) carbonaceous chondrites using single- and multi-collector inductively coupled plasma mass spectrometry (ICP-MS). The bulk abundances of Hg are 294 ± 15 ng/g in Murchison and 30.0 ± 1.5 ng/g in Allende. These values are within the range of previous measurements of bulk Hg abundances by neutron activation analysis (NAA). Prior studies suggested that both meteorites contain isotopically anomalous Hg, with δ196/202Hg values for the anomalous, thermal-release components from bulk samples ranging from −260 ‰ to +440 ‰ in Murchison and from −620 ‰ to +540 ‰ in Allende Jovanovic and Reed 1976a, Jovanovic and Reed 1976b, Kumar and Goel 1992. Our multi-collector ICP-MS measurements suggest that the relative abundances of all seven stable Hg isotopes in both meteorites are identical to terrestrial values within 0.2 to 0.5 ‰.On-line thermal-release experiments were performed by coupling a programmable oven with the single-collector ICP-MS. Powdered aliquots of each meteorite were linearly heated from room temperature to 900°C over twenty-five minutes under an Ar atmosphere to measure the isotopic composition of Hg released from the meteorites as a function of temperature. In separate experiments, the release profiles of S and Se were determined simultaneously with Hg to constrain the Hg distribution within the meteorites and to evaluate the possibility of Se interferences in previous NAA studies. The Hg-release patterns differ between Allende and Murchison. The Hg-release profile for Allende contains two distinct peaks, at 225° and 343°C, whereas the profile for Murchison has only one peak, at 344°C. No isotopically anomalous Hg was detected in the thermal-release experiments at a precision level of 5 to 30 ‰, depending on the isotope ratio. In both meteorites the Hg peak at ∼340°C correlates with a peak in the S-release profile. This correlation suggests that Hg is associated with S-bearing phases and, thus, that HgS is a major Hg-bearing phase in both meteorites. The Hg peak at 225°C for Allende is similar to release patterns of physically adsorbed Hg on silicate and metal grains. Prior studies suggested that the isotopic anomalies reported from NAA resulted from interference between 203Hg and 75Se. However, the amount of Se released from both meteorites, relative to Hg, is insufficient to produce all of the observed anomalies.  相似文献   

2.
Tl and Pb isotopic abundances have been measured in various phases from Allende and the distribution and siting of these elements in the matrix phase investigated. Matrix fractions, prepared by sieving, sedimentation, magnetic separation and acid etching, were further characterised by X-ray diffraction and SEM. Tl concentrations range from 1 ppb in coarse grained inclusions to 1560 ppb in the acid-etched carbon residues and from 32 ppb to 194 ppb in the 16 matrix fractions. Pb concentrations which range from 0.1 ppm to 3.1 ppm, are enhanced in magnetic phases and depleted in Allende pentlandite relative to the whole meteorite. The Tl-204Pb abundance diagram is described near the origin by the inclusions and chondrules and extends through sulphide to the non-magnetic and magnetic matrix fractions. Abundances in the finest grained matrix fractions form a linear trend which passes through the origin and the Orgueil and Murchison whole meteorite data. The deviation of magnetic matrix fractions from the above linear trend is probably related to the presence of an intimate association of an awaruite-sulphide-carbon species. 92% of the Tl in the carbon residues, which is released on hydrolysis with HCl, probably resides in an organic host molecule(s) on the macromolecular carbonaceous material, whereas the surface film of organics on the matrix grains shows no apparent enrichment of Tl.Tl and 204Pb abundances revealed an inverse correlation with grain size and a distribution within the grains rather than as a surface layer, is indicated. Constraints placed by the data on the formational environment of the matrix grains are considered. Interstellar shock heating and rapid radiative cooling is a possible mechanism for the establishment of the observed inverse correlation of volatile abundance with grain size. Matrix data do not lend support for a recent redistribution of lead as an explanation for the apparent excess Pb in Allende. The apparent initial Pb isotopic compositions of the matrix fractions are heterogeneous and not attributable to terrestrial contamination. The very magnetic fractions have high abundances of Pb and the least radiogenic apparent initial Pb compositions, whereas the non-magnetic fractions have lower Pb abundances but more radiogenic apparent initial Pb compositions. The data also indicate that use of the predicted Tl-204Pb cosmothermometer, to infer accretion temperatures, is apparently not valid for individual phases of Allende.  相似文献   

3.
4.
Samples from ten refractory inclusions in Murchison, some of which are splits of inclusions whose mineralogical and petrographic characteristics are known, have been analysed for thirty-six elements by neutron activation. Six inclusions have group II or group III patterns or variants of such patterns. Two inclusions, BB-5 and MUCH-1, have large negative Yb anomalies unaccompanied by correspondingly large negative Eu anomalies. It is possible that the latter condensed originally with group III patterns and preferentially took up Eu in later exchange processes under reducing conditions. One inclusion, SH-2, has heavy REE enrichment factors that increase with the refractoriness of the REE, indicating the presence of an extremely high-temperature, or ultrarefractory, REE condensate, but it also has a heavy REE/light REE ratio that indicates mixing of that component with a lower-temperature REE condensate. The frequency of highly fractionated REE patterns and absence of group I patterns suggest that refractory inclusions in Murchison stopped equilibrating with the nebular gas at higher temperatures than most Allende coarse-grained inclusions. The lower Ir/Os and Ru/Re ratios of some Murchison inclusions compared to those of Allende coarse-grained inclusions indicate that condensate alloys that contributed noble metals to the former also stopped equilibrating with the nebular gas at higher temperatures than those that contributed noble metals to the latter. Murchison inclusions tend to be lower in non-refractory elements than Allende coarse-grained inclusions, suggesting that, on average, the former underwent less severe secondary alteration than the latter.  相似文献   

5.
The organic analysis of the murchison meteorite   总被引:1,自引:0,他引:1  
The organic compounds released from the Murchison carbonaceous chondrite following vaporization-pyrolysis at 150, 300 and 430°C were investigated. The total organic yield was 272 ppm and consisted of n-alkanes, alkenes, aromatic hydrocarbons and thioaromatics. The composition and yield at all three temperatures are compared with those obtained by an identical analysis on another carbonaceous chondrite, Allende, and two terrestrial rocks.Comparison of compounds released by 150°C volatilization of Murchison and Allende reveals remarkable similarities, suggesting commonality in the processes responsible for their formation. The origin of the organic compounds found can be explained in terms of the Fischer-Tropsch synthesis followed by partial equilibration of the primary products. However, problems concerning the relationship between types of carbonaceous chondrites remain unresolved.  相似文献   

6.
We have developed a procedure that allows extraction of clean nanodiamond samples from primitive meteorites for isotopic analyses of trace elements on a timescale of just a week. This procedure includes microwave digestion and optimization of existing isolation techniques for further purification. Abundances of trace elements that are difficult to dissolve using standard procedures (e.g., Ir) are lower in the diamond residues prepared using the new technique. Accelerator mass spectrometry (AMS) was explored as a means for isotopic measurements. Results obtained on diamond fractions from Allende and Murchison show the need for suitable matrix-adjusted standards to correct for fractionation effects; nevertheless they allow putting an upper limit on the abundance of 198Pt-H in nanodiamonds of ∼1 × 1014 atoms/g. This limit is on the order of what can be expected from predictions of competing nucleosynthesis models and extrapolation of the apparently mass dependent abundance trend of the associated noble gases.Unfortunately, and unexpectedly, presolar silicon carbide is almost quantitatively dissolved during microwave digestion with HCl/HF/HNO3. Re-evaluation of the standard extraction technique, however, shows that it also may lead to severe loss of fine-grained SiC, a fact not commonly appreciated. A lower limit to SiC abundance in Murchison is 20 ppm, and previous conclusions that Murchison SiC is unusually coarse-grained compared to SiC in other primitive meteorites seem not to be warranted. Graphite and silicon nitride may survive and possibly can be separated after this step as suggested by a simulation experiment using terrestrial analog material, but the detailed behavior of meteoritic graphite requires further study.  相似文献   

7.
8.
The refractory element-enriched inclusions found in the carbonaceous meteorites give cosmochemists a fascinating glimpse at processes which occurred near the birth of the solar system. Although many complications must still be unravelled, the weight of the available evidence indicates that many of these objects condensed directly from the solar nebula, and have remained relatively unaltered up to the present. Their mineralogical and chemical compositions therefore reflect conditions at the time of their formation. The most thoroughly studied of the inclusions are those from the Allende CV meteorite. These, in general, have mineral assemblages similar to those which would be predicted for nebular condensation. The mineralogical agreement is not strict, however, and also the bulk chemical compositions sometimes deviate markedly from expected trends. More work is required to understand these differences. A range of isotopic anomalies in many elements has been found, in these inclusions. Some of these suggest an extra-solar system origin for a part of the material in the inclusions. Although much less work has been done on the inclusions in the CM meteorites, current data indicate that they will prove to be at least as valuable as those from Allende. Chemical data show that some inclusions in the Murchison meteorite are more refractory than the most refractory Allende inclusions. Isotopic anomalies, including25Mg excesses and oxygen-16 enriched oxygen, indicate that, in spite of chemical and mineralogical differences, the Murchison and Allende inclusions contain common isotopic components, and are probably contemporaneous.  相似文献   

9.
Stepwise dissolutions of the carbonaceous chondrites Orgueil (CI), Murchison (CM) and Allende (CV) reveal large nucleosynthetic anomalies for Zr isotopes that contrast with the uniform compositions found in bulk meteorites. Two complementary nucleosynthetic components are observed: one enriched and one depleted in s-process nuclides. The latter component, characterized by excess 96Zr, is most distinctive in the acetic acid leachate (up to ε96Zr ≈ 50). The excess decreases with increasing acid strength and the final leaching steps of the experiment are depleted in 96Zr and thus enriched in s-process nuclides. Presolar silicon carbide grains are likely host phases for part of the anomalous Zr released during these later stages. However, by mass balance they cannot account for the 96Zr excesses observed in the early leaching steps and this therefore hints at the presence of at least one additional carrier phase with significant amounts of anomalous Zr. The data provide evidence that average solar system material consists of a homogenized mixture of different nucleosynthetic components, which can be partly resolved by leaching experiments of carbonaceous chondrites.  相似文献   

10.
Mineralogical and petrographic studies of a wide variety of refractory objects from the Murchison C2 chondrite have revealed for the first time melilite-rich and feldspathoid-bearing inclusions in this meteorite, but none of these is identical to any inclusion yet found in Allende. Blue spinel-hibonite spherules have textures indicating that they were once molten, and thus their SiO2-poor bulk composition requires that they were exposed to higher temperatures (>1550°C) than those deduced so far from any Allende inclusion. Melilite-rich inclusions are similar to Allende compact Type A's, but are more Al-, Ti-rich. One inclusion (MUCH-1) consists of a delicate radial aggregate of hibonite crystals surrounded by alteration products, and probably originated by direct condensation of hibonite from the solar nebular vapor. The sinuous, nodular and layered structures of another group of inclusions, spinel-pyroxene aggregates, suggest that these also originated by direct condensation from the solar nebular gas. Each type of inclusion is characterized by a different suite of alteration products and/or rim layers from all the other types, indicating modification of the inclusions in a wide range of different physico-chemical environments after their primary crystallization. All of these inclusions contain some iron-free rim phases. These could not have formed by reaction of the inclusions with fluids in the Murchison parent body because the latter would presumably have been very rich in oxidized iron. Other rim phases and alteration products could have formed at relatively low temperatures in the parent body, but some inclusions were not in the locations in which they were discovered when this took place. Some of these inclusions are too fragile to have been transported from one region to another in the parent body, indicating that low temperature alteration of these may have occurred in the solar nebula.  相似文献   

11.
冷原子荧光法测定硫化物单矿物中痕量汞   总被引:3,自引:1,他引:3  
朱敏 《岩矿测试》1990,9(4):268-271
针对辉锑矿、方铅矿、黄铜矿中主体元素Sb、Pb、Cu对原子荧光测定Hg的干扰,本文在20%王水介质中加入酒石酸溶液消除Sb的干扰,采用EDTA来消除Pb和Cu的影响。使得冷原子无色散原子荧光法测定Hg在硫化物类型的单矿物中得到扩大应用。  相似文献   

12.
甘肃省的汞锑矿分布规律及找矿   总被引:1,自引:0,他引:1       下载免费PDF全文
本文介绍了世界和我国汞锑矿的成矿带的划分和基本分布情况,在此基础上对甘肃省的汞锑矿成矿带进行了划分,并说明其分布特点和产地。进一步对甘肃汞锑矿的产出地层时代、围岩特征进行了统计分析,对构造、围岩蚀变和地球化学特征进行了初步总结。回顾了甘肃的汞锑矿勘查简况,提出了对甘肃的汞锑矿找矿的建议。  相似文献   

13.
Deuterium-enriched amino acids occur in the Murchison carbonaceous chrondrite. This meteorite underwent a period of aqueous alteration with isotopically light water. With the objective of setting limits on the conditions of aqueous alteration, the exchange of the carbon-bonded hydrogen atoms of amino acids with D2O has been studied from 295 to 380 K as a function of time and meteorite/heavy water ratio. The amount of Murchison or Allende dust present has a significant effect on the rate and amount of hydrogen-deuterium exchange observed. At elevated temperatures, the alpha-hydrogens of all the amino acids studied were found to exchange with deuterium. In glycine and aspartic acid, this process resulted in total exchange of the carbon-bonded hydrogen. A completely deuterated isotopomer of alanine was produced in significant quantities only when the rock/water ratio was greater than 0.5. No exchange of carbon-bonded hydrogens was observed in the case of amino acids which do not possess an alpha-hydrogen atom. The rates of H/D exchange for amino acids observed here did not correspond to deuterium enrichment of the amino acids in the Murchison meteorite. These results suggest that H/D exchange with water had a negligible effect on the observed deuterium enrichment of amino acids found in Murchison and that the temperature at which the amino acids were exposed to liquid water was close to 273 K.  相似文献   

14.
We report data for Ag, As, Cd, Cs, Co, Cu, Rb, Sb, Te, Tl and Zn in Allende samples subjected to week-long heating at 400–1400°C in a low-pressure H2 environment. Temperatures of incipient release for these 11 and 5 additional elements tend to be ordered in a manner similar to postulated condensation sequences during cooling of nebular material but there are differences. Losses progress with temperature but neither the extent of loss nor apparent activation energies for mobilization would have been predictable to even a zeroth order approximation. Elemental retentivity trends and interelement correlation patterns for Allende (C3V) and Murchison (C2) differ markedly indicating a substantially different trace element siting, hence loss trends for these two chondrites.  相似文献   

15.
Samples studied were residual, carbonaceous /Alates—a coined word to designate colloids prepared sometimes before and sometimes after acid demineralization—from Murray, Murchison, Cold Bokkeveld (type C2s) and Allende (type CV3) meteorites. Characterization: C2 /Alates, comprising 0.5% of the bulk meteorite are fine-grained (< 100 Å), amorphous, sulfide-free, oxidizable, 95% carbonaceous materials which pyrolyze bimodally at 200–700 and 800–1200°C. Allende /Alates are similar but with traces of inferred spinel and chromite and of sulfur, Rare gas results: Elemental: Release from stepwise heated Murray is bimodal with maximum release and upper temperature peak at 1000°C, probably accompanying chemical reaction. All /Alates studied had very nearly the same elemental concentrations, distinctly planetary in pattern. Isotopic: Trapped neon compositions are unprecedentedly close to Pepin's neon-A corner but nevertheless show signs of complexity, as if accompanied by neon-E. The trapped 3He/4He ratio is essentially constant at (1.42 ± 0.2 × 10?4. The isotopically anomalous heavy noble gases, easily detected in the residues of oxidized /Alates, were not conspicuous in this particular study. Comparison and Chicago results: Concentrations of heavy rare gases in our /Alates agree with concentrations measured directly (as opposed to inferred by difference) in acid resistant residues at Chicago. Alone, our results support the idea of a carbonaceous gas-carrier uniformly present in meteorites of various types, but Chicago characterizations of the samples can apply to both their samples and ours provided that the right amount of gas was lost in the Berkeley procedures to make the uniform gas contents in various samples a coincidence.  相似文献   

16.
We measured the 153Eu/151Eu ratio by MC-ICP-MS for a terrestrial basalt, two terrestrial soils, and four meteorites (whole rocks and/or chondrules of Bjurböle, Forest City, Murchison, and Allende) and found no isotopic variations. By contrast, two CAI separates from two different pieces of Allende show a 153Eu deficit of up to one per mil. Such a shortage in the heavy isotopes, which had also been identified in Allende CAIs for Sr [Patchett, P.J. 1980b. Sr isotopic fractionation in Allende chondrules: a reflection of solar nebular processes. Earth Planet. Sci. Lett.50, 181-188], cannot reflect evaporative fractionation. The lack of Sm isotope fractionation in the same samples further makes fractionation by purely kinetic processes an unlikely cause of the anomalous Eu isotopic composition. An alternative interpretation is condensation from a vapor already significantly depleted in Eu, but in such a scenario the fate of the missing material is unclear. We therefore prefer yet another interpretation, based on the low ionization potential of Eu (and Sr), in which electromagnetic separation of the ionized gas preferentially depletes the nebular gas in heavy isotopes.  相似文献   

17.
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg LIII- and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca6Al2(SO4)3(OH)12.26H2O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20–25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg–Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg–Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.  相似文献   

18.
Zinc smelting is currently regarded as one of the most important atmospheric Hg emission sources in the world. In order to assess the potential environmental impacts of Hg from Zn smelting in China, the distribution of total Hg concentration (HgT) in Zn concentrates (ZCs) from 100 Zn deposits in China was investigated. It was found that HgT varies depending on the ore types and their geneses. Zinc concentrates from sedimentary-exhalative deposits (SEDEX, geometric mean = 48.2 μg/g) have the highest HgT. The possible explanation is that the sources of mineralizing solutions for SEDEX deposits are deep formational brines in contact with sedimentary rocks, and there are much higher background Hg contents in sedimentary rocks. Zinc concentrates from volcanic hosted massive sulfide deposits (VMS, geometric mean = 11.5 μg/g) and Mississippi Valley-Type (MVT, geometric mean = 10.1 μg/g) deposits have intermediate HgT. VMS may receive most of their Hg from fluid–rock interaction and/or by direct input of gaseous Hg from a mantle source. However, the source of metals within MVTs may be the low-temperature hydrothermal solution formed by diagenetic recrystallization of the carbonates. Intrusion related deposits (IRs) have the lowest HgT (Geomean = 2.4 μg/g), and the dispersion of Hg in the IRs seems to be influenced by the temperature of ore formation and/or the nature of wall–rock alteration. Finally, it was estimated that the annual Hg emission to the atmosphere from Zn smelting in China was about 107.7 tons in 2006.  相似文献   

19.
Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360 t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000 ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060 ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62 ng/g and were highly elevated compared to regional baseline concentrations (0.11–0.82 ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2 = 0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270 ng/L and were also elevated compared to baselines, but all were below the 770 ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8 ng/L, which were elevated compared to regional baseline sites upstream and downstream from the mine that varied from <0.02 to 0.22 ng/L. Aquatic snails collected downstream from the mine were elevated in Hg indicating significant bioavailability and uptake of Hg by these snails. Results for sediment and water indicated significant methyl-Hg formation in the ecosystem downstream from the Bonanza mine, which is enhanced by the temperate climate, high precipitation in the area, and high organic matter.  相似文献   

20.
The major organic component of carbonaceous chondrites is a solvent-insoluble, high molecular weight macromolecular material that constitutes at least 70% of the total organic content in these meteorites. Analytical pyrolysis is often used to thermally decompose macromolecular organic matter in an inert atmosphere into lower molecular weight fragments that are more amenable to conventional organic analytical techniques. Hydropyrolysis refers to pyrolysis assisted by high hydrogen gas pressures and a dispersed catalytically-active molybdenum sulfide phase. Hydropyrolysis of meteorites has not been attempted previously although it is ideally suited to such studies due to its relatively high yields. Hydropyrolysis of the Murchison macromolecular material successfully releases significant amounts of high molecular weight PAH including phenanthrene, carbazole, fluoranthene, pyrene, chrysene, perylene, benzoperylene and coronene units with varying degrees of alklyation. Analysis of both the products and residue from hydropyrolysis reveals that the meteoritic organic network contains both labile (pyrolysable) and refractory (nonpyrolysable) fractions. Comparisons of hydropyrolysis yields of Murchison macromolecular materials with those from terrestrial coals indicate that the refractory component probably consists of a network dominated by at least five- or six-ring PAH units cross-linked together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号