首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Mohammad Safeeq  Ali Fares 《水文研究》2012,26(18):2745-2764
The impact of potential future climate change scenarios on streamflow and evapotranspiration (ET) in a mountainous Hawaii watershed was studied using the distributed hydrology soil vegetation model (DHSVM). The hydrologic response of the watershed was simulated for 43 years for different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and + 6.4 °C) and precipitation (±5%, ±10% and ±20%) on the basis of the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under current, B1, A1B1 and A1F1 emission scenarios. Vegetation leaf conductance and leaf area index were modified to reflect the increase in CO2 concentration. The relative departure of streamflow and ET from their levels during the reference scenarios was calculated on a monthly and annual basis. Results of this study indicate that the streamflow and ET are less sensitive to changes in temperature compared with changes in precipitation. However, temperature increase coupled with precipitation showed significant effect on ET and streamflow. Changes in leaf conductance and leaf area index with increasing CO2 concentration under A1F1 scenario had a significant effect on ET and subsequently on streamflow. Evapotranspiration is less sensitive than streamflow for a similar level of change in precipitation. On the basis of a range of climate change scenarios, DHSVM predicted a change in ET by ±10% and streamflow between ?51% and 90%. From the six ensemble mean scenarios for AR4 A1B, simulations suggest reduction in streamflow by 6.7% to 17.2%. These reductions would produce severe impact on water availability in the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Located in the northeast of the Tibetan Plateau, the headwaters of the Yellow River basin (HYRB) are very vulnerable to climate change. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the impact of future climate change on this region's hydrological components for the near future period of 2013–2042 under three emission scenarios A1B, A2 and B1. The uncertainty in this evaluation was considered by employing Bayesian model averaging approach on global climate model (GCM) multimodel ensemble projections. First, we evaluated the capability of the SWAT model for streamflow simulation in this basin. Second, the GCMs' monthly ensemble projections were downscaled to daily climate data using the bias‐correction and spatial‐disaggregation method and then were utilized as input into the SWAT model. The results indicate the following: (1) The SWAT model exhibits a good performance for both calibration and validation periods after adjusting parameters in snowmelt module and establishing elevation bands in sub‐basins. (2) The projected precipitation suggests a general increase under all three scenarios, with a larger extent in both A1B and B1 and a slight variation for A2. With regard to temperature, all scenarios show pronounced warming trends, of which A2 displays the largest amplitude. (3) In the terms of total runoff from the whole basin, there is an increasing trend in the future streamflow at Tangnaihai gauge under A1B and B1, while the A2 scenario is characterized by a declining trend. Spatially, A1B and B1 scenarios demonstrate increasing trends across most of the region. Groundwater and surface runoffs indicate similar trends with total runoff, whereas all three scenarios exhibit an increase in actual evapotranspiration. Generally, both A1B and B1 scenarios suggest a warmer and wetter tendency over the HYRB in the forthcoming decades, while the case for A2 indicates a warmer and drier trend. Findings from this study can provide beneficial reference to water resource and eco‐environment management strategies for governmental policymakers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The change of hydrological regimes may cause impacts on human and natural system. Therefore, investigation of hydrologic alteration induced by climate change is essential for preparing timely proper adaptation to the changes. This study employed 24 climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Pathway (RCP) 4.5 scenario. The climate projections were downscaled at a station‐spacing for seven Korean catchments by a statistical downscaling method that preserves a long‐term trend in climate projections. Using an ensemble of future hydrologic projections simulated by three conceptual rainfall‐runoff models (GR4J, IHACRES, and Sacramento models), we calculated Hydrologic Alteration Factors (HAFs) to investigate degrees of variations in Indicators of Hydrologic Alteration (IHAs) derived from the hydrologic projections. The results showed that the seven catchments had similar trend in terms of the HAFs for the 24 IHAs. Given that more frequent severe floods and droughts were projected over Korean catchments, sound water supply strategies are definitely required to adapt to the alteration of streamflow. A wide range of HAFs between rainfall‐runoff models for each catchment was detected by large variations in the magnitude of HAFs with the hydrologic models and the difference could be the hydrologic prediction uncertainty. There were no‐consistent tendency in the order of HAFs between the hydrologic models. In addition, we found that the alterations of hydrologic regimes by climate change are smaller as the size of catchment is larger. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

Most conceptual hydrological models do not treat vegetation as a dynamic component. This study focuses on understanding the impact of model structural complexity on the sensitivity of hydrologic models to potential evapotranspiration forcing data. To achieve this, two classes of hydrologic models are examined: (1) lumped, conceptual rainfall–runoff models and (2) eco-hydrologic models. A sample of 57 US catchments, covering eight eco-regions, included in the MOPEX dataset is used. While streamflow simulation performance in complex models did not exhibit increased sensitivity to PET, actual evapotranspiration simulation performance showed greater sensitivity in energy-limited catchments. This analysis warns against using over-simplistic PET estimations in energy-limited catchments for eco-hydrologic models and for more complex conceptual hydrologic models. This is particularly true for streamflow-only calibrations that commonly fail to properly constrain physically based parameters. Ultimately, these results have the potential to inform data collection and model selection efforts to yield the greatest benefit.  相似文献   

11.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Dejuan Meng  Xingguo Mo 《水文研究》2012,26(7):1050-1061
Influences of climatic change on the components of global hydrological cycle, including runoff and evapotranspiration are significant in the mid‐ and high‐latitude basins. In this paper, the effect of climatic change on annual runoff is evaluated in a large basin—Songhua River basin which is located in the northeast of China. A method based on Budyko‐type equation is applied to separate the contributions of climatic factors to changes in annual runoff from 1960 to 2008, which are computed by multiplying their partial derivatives by the slopes of trends in climate factors. Furthermore, annual runoff changes are predicted under IPCC SRES A2 and B2 scenarios with projections from five GCMs. The results showed that contribution of annual precipitation to annual runoff change was more significant than that of annual potential evapotranspiration in the Songhua River basin; and the factors contributing to annual potential evapotranspiration change were ranked as temperature, wind speed, vapour pressure, and sunshine duration. In the 2020s, 2050s, and 2080s, changes in annual runoff estimated with the GCM projections exhibited noticeable difference and ranged from ? 8·4 to ? 16·8 mm a?1 (?5·77 to ? 11·53% of mean annual runoff). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Xing Fang  John W. Pomeroy 《水文研究》2016,30(16):2754-2772
A devastating flood struck Southern Alberta in late June 2013, with much of its streamflow generation in the Front Ranges of the Rocky Mountains, west of Calgary. To better understand streamflow generation processes and their sensitivity to initial conditions, a physically based hydrological model was developed using the Cold Regions Hydrological Modelling platform (CRHM) to simulate the flood for the Marmot Creek Research Basin (~9.4 km2). The modular model includes major cold and warm season hydrological processes including snow redistribution, sublimation, melt, runoff over frozen and unfrozen soils, evapotranspiration, subsurface runoff on hillslopes, groundwater recharge and discharge and streamflow routing. Uncalibrated simulations were conducted for eight hydrological years and generally matched streamflow observations well, with a NRMSD of 52%, small model bias (?3%) and a Nash–Sutcliffe efficiency (NSE) of 0.71. The model was then used to diagnose the responses of hydrological processes in 2013 flood from different ecozones in Marmot Creek: alpine, treeline, montane forest and large and small forest clearings to better understand spatial variations in the flood runoff generation mechanisms. To examine the sensitivity to antecedent conditions, ‘virtual’ flood simulations were conducted using a week (17 to 24 June 2013) of flood meteorology imposed on the meteorology of the same period in other years (2005 to 2012), or switched with the meteorology of one week in different months (May to July) of 2013. Sensitivity to changing precipitation and land cover was assessed by varying the precipitation amount during the flood and forest cover and soil storage capacity in forest ecozone. The results show that runoff efficiency increases rapidly with antecedent snowpack and soil moisture storage with the highest runoff response to rainfall from locations in the basin where there are recently melted or actively melting snowpacks and resulting high soil moisture or frozen soils. The impact of forest canopy on flooding is negligible, but flood peak doubles if forest canopy removal is accompanied by 50% reduction in water storage capacity in the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The distributed hydrology soil–vegetation model (DHSVM) was applied to the small watersheds WS1, 2, 3 in H.J. Andrews Experimental Forest, Oregon, and tested for skill in simulating observed forest treatment effects on streamflow. These watersheds, located in the rain–snow transition zone, underwent road and clearcut treatments during 1959–66 and subsequent natural regeneration. DHSVM was applied with 10 m and 1 h resolution to 1958–98, most of the period of record. Water balance for old‐growth WS2 indicated that evapotranspiration and streamflow were unlikely to be the only loss terms, and groundwater recharge was included to account for about 12% of precipitation; this term was assumed zero in previous studies. Overall efficiency in simulating hourly streamflow exceeded 0·7, and mean annual error was less than 10%. Model skill decreased at the margins, with overprediction of low flows and underprediction of high flows. However, statistical analyses of simulated and observed peakflows yielded similar characterizations of treatment effects. Primary simulation weaknesses were snowpack accumulation, snowmelt under rain‐on‐snow conditions, and production of quickflow. This was the first test of DHSVM against observations of both control and treated watersheds in a classic paired‐basin study involving a long time period of forest regrowth and hydrologic recovery. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Predicting long‐term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented a hierarchical Bayesian (HB) analysis to coherently admit multiple data sources and uncertainties including data inputs, parameters, and model structures to identify the potential consequences of climate change on soil moisture and streamflow at the head watersheds ranging from low to high elevations in the southern Appalachian region of the United States. We have considered climate change scenarios based on three greenhouse gas emission scenarios of the Interovernmental Panel on Climate Change: A2, A1B, and B1 emission scenarios. Full predictive distributions based on HB models are capable of providing rich information and facilitating the summarization of prediction uncertainties. With predictive uncertainties taken into account, the most pronounced change in soil moisture and streamflow would occur under the A2 scenario at both low and high elevations, followed by the A1B scenario and then by the B1 scenario. Uncertainty in the change of soil moisture is less than that of streamflow for each season, especially at high elevations. A reduction of soil moisture in summer and fall, a reduction or slight increase of streamflow in summer, and an increase of streamflow in winter are predicted for all three scenarios at both low and high elevations. The hydrological predictions with quantified uncertainties from a HB model could aid more‐informed water resource management in developing mitigation plans and dealing with water security under climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, these effects are quantified using three methods, namely, multi‐regression, hydrologic sensitivity analysis, and hydrologic model simulation. A conceptual framework is defined to separate the effects. As an example, the change in annual runoff from the semiarid Laohahe basin (18 112 km2) in northern China was investigated. Non‐parametric Mann‐Kendall test, Pettitt test, and precipitation‐runoff double cumulative curve method were adopted to identify the trends and change‐points in the annual runoff from 1964 to 2008 by first dividing the long‐term runoff series into a natural period (1964–1979) and a human‐induced period (1980–2008). Then the three quantifying methods were calibrated and calculated, and they provided consistent estimates of the percentage change in mean annual runoff for the human‐induced period. In 1980–2008, human activities were the main factors that reduced runoff with contributions of 89–93%, while the reduction percentages due to changes in precipitation and potential evapotranspiration only ranged from 7 to 11%. For the various effects at different durations, human activities were the main reasons runoff decreased during the two drier periods of 1980–1989 and 2000–2008. Increased runoff during the wetter period of 1990–1999 is mainly attributed to climate variability. This study quantitatively separates the effects of climate variability and human activities on runoff, which can serve as a reference for regional water resources assessment and management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
An ensemble of stochastic daily rainfall projections has been generated for 30 stations across south‐eastern Australia using the downscaling nonhomogeneous hidden Markov model, which was driven by atmospheric predictors from four climate models for three IPCC emissions scenarios (A1B, A2, and B1) and for two periods (2046–2065 and 2081–2100). The results indicate that the annual rainfall is projected to decrease for both periods for all scenarios and climate models, with the exception of a few scenarios of no statistically significant changes. However, there is a seasonal difference: two downscaled GCMs consistently project a decline of summer rainfall, and two an increase. In contrast, all four downscaled GCMs show a decrease of winter rainfall. Because winter rainfall accounts for two‐thirds of the annual rainfall and produces the majority of streamflow for this region, this decrease in winter rainfall would cause additional water availability concerns in the southern Murray–Darling basin, given that water shortage is already a critical problem in the region. In addition, the annual maximum daily rainfall is projected to intensify in the future, particularly by the end of the 21st century; the maximum length of consecutive dry days is projected to increase, and correspondingly, the maximum length of consecutive wet days is projected to decrease. These changes in daily sequencing, combined with fewer events of reduced amount, could lead to drier catchment soil profiles and further reduce runoff potential and, hence, also have streamflow and water availability implications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The hydrological effect of forest recovery is receiving renewed interest globally because information on forest carbon–water relationship is critically needed to support carbon management through reforestation and sustainable water management. In Northeastern China, summer (June to August) streamflow accounts for about 50% of total annual streamflow and is vital to water supply and management in the region. Understanding how forest recovery may affect streamflow is important to both reforestation campaign and long‐term water sustainability. In this study, we analysed 33 years of summer hydrologic data (1970–2002) from two comparable small‐scale watersheds located in the Xiaoxing'anling, Northeastern China. Time series analysis and two graphic methods (double mass curve and flow duration curve) with statistical testing as well as long‐term data on forest cover changes and climate were used. Our results show that the significant streamflow reduction as a result of reforestation occurred when forest cover reached 70% or 10 years after planting. After forest cover reached 85%, water reduction became stabilized. The accumulative streamflow reduction in 2002 reached 8·61% of the total accumulative streamflow. Among those water reduced, high flows (from 5 to 25 percentiles) were mostly affected, demonstrating that northeastern forests have an important role in reducing high flows. Implications of these results are discussed in the context of climate change, reforestation and water resource management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号