首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Analyses of some Australian crude oils show that many contain varying concentrations of A/ B-ring demethylated hopanes. These range from C26 to C34 and have been identified from their retention times and mass spectral data as 17α(H)-25-norhopanes. Comparison of hopane and demethylated hopane concentrations and distributions in source-related, biodegraded oils suggests that demethylated hopanes are biotransformation products of the hopanes. Further, it appears that the process occurs at a late stage of biodegradation, after partial degradation of steranes has occurred. Demethylated hopanes are proposed as biomarkers for this stage of severe biodegradation. The presence of these compounds in apparently undegraded crude oils is thought to be due to the presence of biodegraded crude oil residues which have been dissolved by the undegraded crude oil during accumulation in the reservoir sands. The timing of hopane demethylation, relative to the degradation of other compounds, has been assessed and the progressive changes in crude oil composition with increasing extent of biodegradation have been identified. The use of demethylated hopanes as maturity parameters for severely biodegraded crude oils, and the applicability of established biomarker maturity parameters to such oils, are also discussed.  相似文献   

2.
包建平  朱翠山  杨茜 《地质学报》2023,97(8):2659-2675
借助色谱- 质谱(GC- MS)和色谱- 质谱- 质谱(GC- MS- MS)分析,对黔南坳陷凯里残余油藏凯棠和洛棉剖面上储层沥青中的烃类组成进行了系统分析,以判断其所遭受生物降解作用的程度,探寻在极端降解原油中是否还存在原生生物标志物,为这类原油的油源研究开拓新的途径和方法。结果表明:凯棠剖面上的储层沥青中尽管仍可检测到较为完整的C19- 30三环萜烷和C27- 35藿烷系列,但C19- 29脱甲基三环萜烷系列和C26- 34 25- 降藿烷系列丰富而完整,甾烷系列中C21- 22低分子量甾烷和重排甾烷优势明显,这一系列特征表明这些沥青遭受了剧烈生物降解作用的改造。但三芳甾类仍保存完好,依据原油生物降解程度的评判标准,判断其生物降解级别介于8~9级之间。洛棉剖面上的储层沥青中藿烷系列基本消失殆尽,三环萜烷系列及其脱甲基产物和25- 降藿烷系列的分布因极端生物降解作用而发生显著变异,某些化合物如C23T、C24T、C23NTE和C28- 29NH成为优势成员;甾烷系列中C21- 22低分子量甾烷占绝对优势,三芳甾类完全消失,据此判断该剖面上沥青的生物降解级别已达到10级或更严重。由于这两个剖面上的沥青遭受了极端生物降解作用的改造,常用的甾、萜类生物标志物完全失去了实用价值。但是,在所分析的这些沥青中都检测到三个系列的C27- 35 8,14- 开环藿烷系列,它们与塔里木盆地塔中地区海相端元油中存在的同类标志物的分布特征相似。正常海相端元油和极端生物降解沥青中同时检测到这三个系列的8,14- 开环藿烷,这一事实表明这类生物标志物在成因上具有原生性,而与生物降解作用无关。此外,在极端生物降解作用沥青中的完好保存,表明它们具有极强的抗生物降解能力,因而它们在此类原油的油源研究中可能具有潜在的实用价值。  相似文献   

3.
Chromato-mass-spectrometric studies made it possible to identify a wide spectrum of hydrocarbon biomarkers in crude oils from Cenomanian pools of northern West Siberia (Russkoe, Pangodinskoe, Van-Eganskoe, Severo-Komsomol’skoe). The distribution pattern of the main hydrocarbon components (n-alkanes, acyclic isoprenanes, steranes, terpanes) shows that most of the oils underwent intense microbial oxidation. We have established high concentrations of 25-norhopanes typical of high-degree degradation; demethylated hopanes are also revealed in “alkane” crude oils. Among low-molecular chemofossils, bi- and tricyclic mono and sesquiterpanes have been recognized, whose precursors are usually biomolecules synthesized by plants. Unsaturated precursors of mono and sesquiterpanes might have been the starting material for thermocatalytical synthesis of framework adamantanoid structures, whose high concentrations have been found in alkane-free crude oils.  相似文献   

4.
对渤海湾盆地一系列生物降解原油的色谱-质谱分析结果表明,庙西凹陷PL15-8D与PL9-4井四个严重生物降解原油三环萜烷系列分布较为异常,主要表现为以C23为主峰的后峰型、C20与C23为主峰的微弱双峰型以及以C20与C24为主峰的双峰型分布模式。强烈的生物降解作用导致C19~C23三环萜烷优先于C24+三环萜烷被不同程度地侵蚀,是形成这一异常分布的根本原因。三环萜烷系列相对丰度与绝对浓度的变化规律表明,不同碳数三环萜烷的生物降解作用同时发生,但其降解速率有明显差别,即抗生物降解能力不同。三环萜烷系列化合物(除C20三环萜烷以外)的抗生物降解能力具有随碳数增加而增强的趋势,而C20三环萜烷抗降解能力似乎强于C21~C23三环萜烷。原油中未检测到脱甲基三环萜烷,表明三环萜烷的降解并非通过微生物的脱甲基化作用,推测其降解途径是微生物氧化三环萜烷C环支链末端的甲基,形成对应的羧酸化合物。四个原油样品甾烷、藿烷与三环萜烷被微生物严重侵蚀,不能用于油源对比研究,而三芳甾烷未受生物降解影响,可作为研究区严重生物降解原油油源对比的有效指标。  相似文献   

5.
A geochemical investigation of oils in sandstone core plugs and drill stem test oils was carried out on samples from a North Sea reservoir. A sample of diesel used as a constituent of the drilling fluids was also analysed. The aliphatic and aromatic hydrocarbons and polar non-hydrocarbons were isolated using solid phase extraction methods. GC analysis of the hydrocarbon fraction of the core extract indicated that contamination may be diesel derived. From analysis of diesel some compound classes are less likely to be affected by contamination from diesel itself including: steranes, hopanes, aromatic steroid hydrocarbons, benzocarbazoles and C0–C3-alkylphenols.  相似文献   

6.
Based on the compositions and distributions of biomarkers in thirty-five representative oil samples, oils from the Tarim Basin of northwestern China are mainly divided into two oil families. One oil family contains relatively low amounts of C15-C20 isoprenoid hydrocarbons and shows pristane predominance with Pr/Ph ratios ranging from 1.50 to 3.00. The GC/MS analytical data of these oils show the occurrence of abundant hopanes, and low concentrations of steranes and tricyclic terpanes with hopanes/steranes ratios from 6.25 to 12.24 and tricyclic terpanes/hopanes ratios from 0.03 to 0.24. These oils contain low drimane relative to homodrimane (C15/C16 < 1.0) and abundant rearranged bicyclanes in bicyclic sesquiterpanes. They are dominated by low carbon number (C19-C21) compounds in the tricyclic terpanes, and are rich in rearranged hopanes, C29Ts and an unknown C30 compound in pentacyclic triterpanes. These geochemical characteristics suggest that the oils were generated mainly from terrigenous organic matter. The other oil family shows remarkably different biomarker compositions and distributions. The oils revealed Pr/Ph ratios of about 1.0, high drimane/homodrimane ratios (>1.0), low hopanes/steranes ratios (0.65–2.50), high tricyclic terpanes/hopanes ratios (0.30–2.00) and a dominant peak at C23 in tricyclic tepanes, suggesting a marine organic origin. Oil-source rock correlation indicates that these two oil families seem to have been derived from Mesozoic Jurassic-Triassic terrestrial source rocks (shales and coal seams) and Lower Paleozoic Ordovician-Cambrian marine source rocks, respectively.  相似文献   

7.
Twelve oil samples have been characterised by titration, FT-IR and chromatographic analysis to determine the differences between the organic acid composition of biodegraded and non-biodegraded oils. The biodegraded oils have higher total acid and total base contents, both by titration and extraction. The molecular weight ranges of the extracted acids are lowest in the biodegraded oils, and the equivalent weight calculations indicate a dominance of multi-functional molecules. Gel permeation chromatography gives a molecular weight range with most of the molecules between 300 and 500 g/mol. FT-IR shows that the extracted acids from biodegraded oils are more carboxylic and aliphatic while the non-degraded oils are more phenolic. Molecular analysis of the derivatised extracts give UCM envelopes for biodegraded oils, and no molecular identification. The results indicate that the acidic constituents in biodegraded oils are a product of the biodegradation, as the composition is very different from the non-biodegraded oils.  相似文献   

8.
Origin and occurrence of 25-norhopanes: a statistical study   总被引:1,自引:0,他引:1  
The alkane fraction of more than 200 rocks, biodegraded oils and non-biodegraded oils, have been analysed by means of computerized GC-MS, in order to investigate the effect of natural biodegradation on the occurrence of “demethylated hopanes”, i.e. 17α-25-norhopanes. The results obtained indicate that 25-norhopanes are preexisting biomarkers the concentration of which is enhanced by selective biodegradation of more readily degradable homologs, i.e. regular hopanes, rather than by demethylation of hopanes in reservoirs. However, the use of 25-norhopane enrichment as a palaebiodegradation indicator in apparently non-biodegraded oils is still valuable providing the initial background content in the corresponding source rocks is known. Furthermore, 25-norhopanes appear to be diagnostic of specific environmental conditions (marine and lacustrine source rocks, dysoxic and not very hypersaline). Lastly, one other (novel) bacterially resistant rearranged hopanoic compound, namely a C29 neohopane, is applicable for both biodegradation and maturation evaluation.  相似文献   

9.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

10.
Hydrous pyrolysis of asphaltenes has been tested as a method to reconstruct the chemical composition of biodegraded oils and oil seeps. The asphaltenes of three oils (a nondegraded oil, a biodegraded oil, and a biodegraded oil seep) from the Monterey Formation were studied. Results show that the aliphatic fraction generated by hydrous pyrolysis is very similar in chemical composition to the non-degraded oil. This makes the method very useful in correlation studies of biodegraded and nondegraded oils. It also allows to roughly estimate the maturity of the source of the biodegraded oil or oil seep.  相似文献   

11.
东营凹陷牛庄砂岩透镜体油气藏微观充注机理   总被引:6,自引:3,他引:3  
对牛庄油田牛103井、牛105井、牛106井、牛107井和史11井共计36块流体包裹体样品进行了系统而深入的研究, 系统获取了牛34-C砂体、牛106-D砂体和史10-C砂体的GOI (artz grains containing oil inclusions, 石英颗粒含油包裹体丰度) 数据.运用GOI分析技术和荧光观测技术, 结合试油成果数据, 分析了牛庄油田岩性油气藏的油气微观充注历史.结果表明: 早期充注于史10-C砂体、牛106-D砂体中的早期成熟油气藏, 可能遭受晚期充注高成熟油气的驱替, 并有可能在浅层形成次生油气藏, 而现今赋存于这些岩性油气藏的油气主要为晚期充注的产物; 牛34-C砂体中的油藏为两期油气充注共同作用结果.上述认识对揭示牛庄地区隐蔽油气藏成藏机理具有参考意义.   相似文献   

12.
       混源油的定量判识是当前石油地质地球化学研究的热点与难点。以塔里木盆地塔河油田奥陶系中聚集的混源油为典型研究实例,通过地质地球化学与数理统计学相结合的方法,探索了定量研究混源油的方法,取得良好效果。原油地球化学研究结果表明,塔河油田原油普遍混源,并表现出多期充注特征,早期充注原油遭受了生物降解,因此目前原油中的轻烃、链状烃、规则甾烷等生物标志物主要反映的是后期充注原油的特征,不能很好地指示早期充注原油。据此,选择受生物降解影响相对较小的三环萜烷和藿烷定量数据,采用多元数理统计学交替最小二乘算法进行了原油成因研究,综合分析后认为现今混源油中可划分出4个端元,其中端元1和2可能主要代表了中上奥陶统烃源岩的贡献,而端元3和4则可能主要代表了寒武系烃源岩的贡献。塔河主体区以寒武系原油聚集为主,而外围地区则以中上奥陶统原油聚集为主,并且在整个塔河油田,总体上以寒武系原油的贡献比例相对最高。这一综合对比研究表明,多元数理统计学方法在混源油的比例计算、端元分析等方面具有重要作用,是对传统地球地球化方法研究的有效补充,值得推广应用,此外,研究认识还为区域油气勘探提供了新的参考信息。  相似文献   

13.
利用色谱—质谱定量分析技术,对40余个取自四川盆地北部石龙场和元坝地区不同成熟度的中、下侏罗统湖相烃源岩和原油样品进行分析,以此揭示其重排藿烷组成和分布的变化特征,并进行精细的油源对比。研究结果表明,不同成熟度的烃源岩中重排藿烷的丰度相差悬殊。石龙场地区Ro值为0.8%~1.0%的中侏罗统千佛崖组和下侏罗统自流井组大安寨段泥岩中,各类重排藿烷异常丰富,检出了17α(H)-重排藿烷、18α(H)-新藿烷和早洗脱重排藿烷3个完整碳数系列。它们的相对含量大都数倍于规则藿烷,是该层系烃源识别的分子标志。而在相邻的元坝地区相带、岩性相近的这两层段高成熟(Ro值主要在1.4%~1.9%)烃源岩中,藿烷类化合物出现异常变化,重排藿烷的相对含量很低,可能与干酪根在高热演化阶段生成的规则藿烷比例较高有关。烃源岩中高丰度重排藿烷并不取决于其绝对含量的高低,而在于它们相对于规则藿烷的富集。弱氧化的沉积环境是导致重排藿烷相对富集的一个重要原因,而有机质生源中的细菌组成可能更是一个关键因素。当烃源岩达到高成熟阶段时,藿烷类化合物的组成和分布不再受控于热化学动力学机制,各类重排藿烷均按一定比例分布,基本失去了其地球化学属性。区内中、下侏罗统原油中重排藿烷的组成和分布也随热演化程度而变化。它们在成熟原油中极丰富,而在高成熟原油中则很少,与烃源岩存在对应关系。经油—岩对比,认为这些原油来源于所在层位的烃源岩。  相似文献   

14.
热力作用对烃源岩中重排藿烷类化合物形成的作用   总被引:1,自引:1,他引:0  
张敏  李谨  陈菊林 《沉积学报》2018,36(5):1033-1039
通过对87个采自鄂尔多斯盆地煤系烃源岩和松辽盆地湖相烃源岩样品进行的地球化学分析结果显示,热力作用对烃源岩重排藿烷组成特征的影响强烈。随成熟度的变化,来自两套沉积体系的烃源岩中重排藿烷相对丰度的分布相似,随成熟度增大17α(H)-重排藿烷和18α(H)-新藿烷相对丰度均先增大后减小,并在Ro:0.80%~0.90%(生油窗)时达峰值。不同沉积环境的烃源岩中重排藿烷的成熟度与绝对浓度的变化规律一致。在Ro:0.50%~0.70%(未熟-低熟)阶段,重排藿烷绝对浓度较大;在Ro:0.70%~0.80%(成熟)阶段,重排藿烷的绝对浓度显著降低。不同沉积环境中重排藿烷的参数随成熟度的变化规律揭示:在重排藿烷的形成过程中,热力作用的影响要强于沉积环境和生物来源。  相似文献   

15.
Since many immature oils have been found in a number of Tertiary basins of China, a series of cores (Oligocene) and several immature rocks after thermal simulation have been investigated for their biomarker distributions by GC and GC-MS. The presence of biomarkers in the cores seem to follow a rule of less to greater stability of hopenes, ββ-hopanes, diasterenes with increasing the depth of cores, and subsequently the 22R, 22S configuration of hopanes reaches equilibrium. The thermal simulation experiments with immature rocks demonstrated that it is possible to generate some immature oils from immature rocks during the diagenesis stage. The tricyclic terpanes generated from source rocks during diagenesis stage tended to be enriched in the oils compared to their source rocks and the relative abundance of lower molecular weight tricyclic terpanes to their higher molecular weight homologues may be useful for the subdivision of diagenesis.  相似文献   

16.
Physical simulation experiment on oil displacement is an important approach to understand the mechanism and efficiency of displacement. Physical simulation experiments on water-flooding and chemical flooding in real cores with different lithologies and physical properties, reservoir Rock-Eval, TLC-FID, GC of saturated hydrocarbon fractions and GC-MS of saturated and aromatic hydrocarbon fractions were performed to investigate differences in the geochemistry of residual oils in the cores processed by water-flooding and chemical flooding. After fine sandstone was displaced with the two methods, the preferable replacement efficiency was displayed by the chemical constitutions of residual oils. As to glutenite, water-flooding is less effective, while chemical flooding has excellent performance according to changes in chemical compounds in oils. The results showed that the geochemical characteristics of the reservoir oils and lithology and physical properties of reservoir bed need to be considered in selecting replacement methods. In addition, the geochemical parameters for residual oils slightly changed during water-flooding and chemical flooding, which suggested the water-flooding and chemical flooding could not affect the application of these parameters in geochemistry.  相似文献   

17.
生物标志物藿烷类的单体碳稳定同位素研究   总被引:2,自引:0,他引:2  
对 5个广东泥炭样品和 3个准噶尔盆地西北缘原油样品中支链烷烃和环烷烃进行了分离,应用色谱 -同位素比值质谱 (GC -IRMS)测定了其中藿烷类单体碳稳定同位素比值,研究它们的碳同位素组成变化,结果表明泥炭中藿烷类δ13C为 - 2 1.7‰~ - 34.4‰,与湖相页岩和原油中藿类相比,相对富集13C;同一样品中,不同碳数和不同构型的藿烷之间,δ13C相差 4.4‰~ 1 2.8‰,说明同一沉积环境中可能生长具有不同碳同位素组成藿类先质的多种微生物,相对亏损13C的C29βα、C29ββ、C31βα藿烷可能来自甲烷菌,相对富集13C的C29αβ、C30 αβ藿烷可能来自化学自养型细菌;准噶尔盆地原油中藿烷类碳同位素δ13C为 - 30.6‰~ - 53.4‰,原油之间藿烷δ13C值具有明显差别,它们指示克乌断裂带东部原油来自二叠系,西部原油来自侏罗系与三叠系。  相似文献   

18.
Novel side chain methylated and hexacyclic hopanes have been identified in coals and oils from around the world. Extended hopanes (>C32) with an additional methyl in the side chain (“isohopanes”) were identified by comparison with synthetic standards. The major C33-C35 isohopanes are 31-methylbishomohopanes, 32-methyltrishomohopanes and 33-methyltetrakishomohopanes. Extended hopanes methylated at C-29 were not detected. The 17α(H),21β(H)-31-methyltrishomohopanes show four peaks on gas chromatography because of the extra asymmetric carbon at C-31. Like regular hopanes, the isohopanes extend beyond C35. Low concentrations of novel hexacyclic hopanes having 35 or more carbons were also detected in oils and coal extracts. The C35 hexacyclic hopanes were identified as 29-cyclopentylhopanes. Isohopanes are released from the kerogen by hydrous pyrolysis and hydropyrolysis. The 22S/(22S + 22R) ratio for 31-methylbishomohopanes and other isohopanes is around 0.60 at equilibrium in geological samples. They isomerize slightly more slowly than regular C33 hopanes. Isohop-17(21)-enes, 2α-methylisohopanes and two series of rearranged isohopanes were tentatively identified. Isohopanes can be biodegraded to form the corresponding 25-norhopanes. When 25-norhopanes are not formed, the isohopanes are much more resistant to biodegradation than regular hopanes. In biodegraded oil seeps from Greece, 30-norisohopanes were tentatively assigned. The composition and relative abundance of C33 and C34 isohopanes in a worldwide set of coals and crude oils was determined. Isohopanes are abundant in coal and coal-generated oils, where they can account for more than 5% of all extended hopanes, and low in abundance in oils from source rocks deposited under anoxic conditions.  相似文献   

19.
The Murteree Ridge is a focus for up-dip migration from two major hydrocarbon kitchens within the intracratonic Cooper (Carboniferous–Triassic) and Eromanga (Jurassic–Cretaceous) Basins of South Australia. The accumulation histories of nine oil fields along and adjacent to the ridge have been reconstructed by sequential solvent extraction and analysis of residual oils in sandstone core plugs from their stacked reservoirs. Four Cretaceous reservoir units received multiple oil charges that varied widely in source affinity, from mostly Jurassic (and/or Cretaceous) to overwhelmingly Permian in origin. The distributions of residual oil saturations in live and palaeo-columns are consistent with the existence of two compartments, with the uppermost pools (Cadna-owie, Murta) showing the highest Permian inputs. These accumulations represent the earliest escape of low-maturity Cooper-sourced oil into overlying Eromanga strata. This initial charge was displaced upwards into the shallower traps by subsequent hydrocarbon pulses. Three separate Permian-charge episodes can be recognised. The corresponding DST oils (0.6–0.7% Rc) represent either the compositional average of all charges to their respective reservoirs, or a continuation of the alternating filling pattern observed for successive charges. Oils in the Hutton (Jurassic) reservoir of the outlying Kerrina and Mudlalee Fields to the northeast appear to be mixtures of two distinct Early Permian oil families, variably co-mingled with locally derived Jurassic and possibly Cambrian hydrocarbons.  相似文献   

20.
Crude oil samples from two basins were analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOFMS) to better understand the compositional heterogeneity of branched-cyclic hydrocarbons. GC×GC–TOFMS and conventional GC–MS results were compared. GC×GC–TOFMS revealed a wide range of compounds, including tricyclic, tetracyclic and pentacyclic terpane series, rearranged hopanes, methyl hopanes, secohopanes, onoceranes and steranes. Assignment of methyl hopane and 8,14-secohopane series other than onocerane isomers was only possible due to the high peak capacity and sensitivity of GC×GC. The oils comprised a mixture of two end members: non-biodegraded oil with abundant tricyclic terpanes and hopanes, and severely biodegraded oil with abundant 8,14-secohopane and demethylated tricyclic terpanes. A predominance of two distinct series, 3β-methylhopane and onocerane, was detected only in the lacustrine samples (classification based on biomarker parameters). In contrast, the predominance of a 2α-methylhopane series and lack of onocerane were found only for the marine oil sample. The results suggest that the distribution of 3β- and 2α-methylhopane series and the presence or absence of onocerane isomers reflect genetic differences in the source organic matter and that these compounds are new classes of biomarkers that can used as depositional paleoenvironment proxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号