首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
阿巴拉契亚造山带加拿大纽芬兰岛东南部发育一晚泥盆纪阿克利巨型花岗岩基(~2500 km2).该岩基侵位于甘德和阿瓦隆地块的多佛-赫米蒂奇湾巨型断层带之间,内部发育钨-锡-钼矿床及相关的矿化.本文锆石年代学研究显示,岩基中Tolt单元侵位于378±2 Ma,各单元年龄基本一致,为同期岩浆多次侵位的产物.岩基中主要岩石类型...  相似文献   

2.
The Blue Tier Batholith is one of a number of high-level, essentially postkinematic, composite granitoid bodies occurring at the southern end of the Tasman orogenic belt of Eastern Australia.An integrated study of the structure, texture, and geochemistry of the batholith suggests that it has a cumulate-like character. In particular, the trace element (Ba, Rb, Sr) data, when constrained by textural features of the granitiods, indicate that the batholith formed by fractional crystallization of a single magma which underwent crystallization in situ by progressive nucleation and solidification from the roof, walls, and floor inwards. Progressive changes in liquids (cumulate) mineralogy during crystallization led to the observed sequence of early biotite and/or hornblende granodiorites followed by biotite adamellites and late muscovite biotite granites. Progressive in situ crystallization led in some instances to gradational boundaries between granitoid types whereas periodic tectonic distrubances caused the rest magma to reintrude earlier crystallizates in places: thus emplacement and crystallization sequences are parallel. The ultimate product of fractional crystallization was a water-saturated melt, enriched in incompatible elements, whose crystallization resulted in significant tin mineralization.The chemistry of the rocks comprising the batholith is in many respects analogous to that of basic cumulate rocks, although an origin by outward growth of crystals and expulsion of interstitial melt, coupled with convective mixing, rather than by crystal settling, is favoured for the granitoid suite. It is suggested that the Blue Tier Batholith is not an isolated example of a granitoid body with cumulate-like character, but that such bodies may be more common than is recognized.  相似文献   

3.
系统研究了英城子金矿区内花岗岩的地质、岩相学和元素地球化学特征。研究结果显示:该类花岗岩为富硅(w(SiO2)=71.12%~75.66%)、高分异(DI=90.53~94.42)、钾质钙碱性岩(σ=2.37~3.94),富集大离子亲石元素(LREE/HREE=11.20~14.62,w(Rb)=(270.6~165.3)×10-6,Na2O/K2O =0.18~0.67,等),具负的铕异常,相对亏损Ba、Nb、Sr、P和Ti等元素。这种特征揭示该类花岗岩是准铝质、高分异I型花岗岩,它的母岩浆可能是I型花岗质岩浆,是母岩浆经以斜长石为主的矿物相分离结晶作用后产生的岩浆经结晶作用形成。结合锆石的年代学研究成果,进一步确立该花岗岩可能是在麻山期深变质作用过程中地壳深熔形成的岩浆经分离结晶作用形成,岩浆就位发生在麻山期陆内造山作用的挤压向伸展转换阶段,从发生到就位持续大约20 Ma。  相似文献   

4.
The evolution characteristics of Gejiu granites, Yunnan Province are described in terms of their petrology, especially their trace elements and REE geochemistry. The three major types of Gejiu granites: porphyritic biotite monzonitic granite (stage I), medium-coarse-grained biotite-K-feldspar granite (stage II) and two-mica alkali-feldspar granite (stage III) are thought to have been formed successively from the same granite magma source through fractional crystallization (Rayliegh fractionation), because linear correlations are found between log(Rb/Sr)-log Sn, log(Rb/Ba)-log Sn, log(Rb/Ba)-log(Rb/Sr), log La-log Sr, log Ce-log Sr, log Eu-log Sr, etc. In addition, the characteristics of REE distribution patterns in these three major types of granites also reflect the magmatic differentiation features of Gejiu granites. Of the three major types, the two-mica alkali-feldspar granite of stage III underwent the strongest differentiation, and thus has the closest genetic relationship with the Gejiu tin-polymetallic ore deposit. Such tin-polymetal mineralized granites are characterized by high Rb/Sr and Rb/Ba ratios, low K/Rb and ΣCe/ΣY ratios and remarkable Eu depletion.  相似文献   

5.
SHRIMP锆石U-Pb年龄测定表明,辽东半岛弟兄山岩体的侵位时代为三叠纪(205.2±2.1 Ma),是华北东部三叠纪花岗岩的一部分.全岩岩石化学分析结果显示,弟兄山花岗岩具有高SiO2、Al2O3、K2O,低TiO2、Na2、MnO和CaO的特征,K2O+Na2变化范围为7.88%~9.28%,K2O/Na2 ≥ 1.16~1.46;CaO/Na2=0.08~0.23,铝指数A/CNK=0.95~1.10,并且在矿物组合中出现白云母,属准铝-过铝质花岗岩.在SiO2-Zr图解中,所有样品点均落在S型花岗岩区域中.以上特征均显示该花岗岩为准铝-过铝质S型花岗岩.稀土曲线和稀土参数表现出强烈的轻、重稀土分异特征和明显的Eu负异常特征,反映源区岩浆形成后发生过斜长石或其他富Ca矿物的分离结晶作用,是典型准铝-过铝质花岗岩的稀土元素特征.在原始地幔标准化的微量元素蛛网图上,所有花岗岩均富集Rb、Th,明显亏损Nb、Ta、Sr和Ti.所有样品的Rb=133×10-6~360×10-6,绝大多数样品高于花岗岩的平均值(200×10-6);Sr(25×10-6~135×10-6)和Ba(48×10-6~507×10-6)明显低于花岗岩的平均值(Sr 300×10-6,Ba 830×10-6),Ba、Sr亏损反映岩浆经历了较为完全的分离结晶作用;大离子亲石元素Rb、Th富集,Nb和Ta亏损显示陆壳物质为岩浆的源岩.上述特征表明岩浆物质来源于陆源碎屑岩石.结合区域构造演化历史,认为弟兄山岩体是库拉-太平洋板块向欧亚大陆俯冲的产物,是印支晚期华北岩石圈处于弱伸展状态背景的响应.  相似文献   

6.
老牛山复式花岗岩基位于华北克拉通南缘小秦岭地区,锆石LA-ICP-MS U-Pb 定年结果表明,该岩基早期花岗岩--
康坪岩体形成于晚三叠世[(207.9±0.72)]Ma,是早中生代岩浆作用的产物。该岩体具有高硅、富碱、准铝的地球化学特征,
铁镁比值较高,富集LILE(尤其是Sr 和Ba)和LREE,Eu 无明显异常,相对亏损HREE 和Y,可归属为高Ba-Sr 花岗岩。但
与典型埃达克岩相比,康坪岩体Cr,Ni 等相容元素含量较低,而K2O 含量明显偏高,属高钾钙碱性系列,重稀土元素分馏
不显著。在成岩过程中,康坪岩体的地球化学行为主要受角闪石(单斜辉石)、斜长石(钾长石)以及极少量石榴子石的分
离结晶控制。元素和同位素地球化学研究表明,老牛山复式花岗岩基康坪岩体成岩物质主要来自含远洋沉积物俯冲板片析
出流体/ 熔体交代的富集地幔以及古老太华群基底物质所组成的混合源区,是大陆碰撞造山晚期后碰撞“松弛”阶段,俯冲
板片断离后下地壳底部物质发生部分熔融形成的岩浆产物。  相似文献   

7.
Editorial          下载免费PDF全文
The Rattlesnake Tuff of eastern Oregon comprises >99% ofhigh-silica rhyolite glass shards and pumices representing 280km3 of magma. Glassy, crystal-poor, high-silica rhyolite pumicesand glass shards cluster in five chemical groups that rangein color from white to dark gray with increasing Fe concentration.Compositional clusters are defined by Fe, Ti, LREE, Ba, Eu,Rb, Zr, Hf, Ta, and Th. Progressive changes with increasingdegree of evolution of the magma occur in modal mineralogy,mineral composition, and partition coefficients. Partition coefficientsare reported for alkali feldspar, clinopyroxene, and titanomagnetite.Models of modal crystal fractionation, assimilation, successivepartial melting, and mixing of end members cannot account forthe chemical variations among rhyolite compositions. On theother hand, 50% fractionation of observed phenocryst compositionsin non-modal proportions agrees with chemical variations amongrhyolite compositions. Such non-modal fractionation might occuralong the roof and margins of a magma chamber and would yieldcompositions of removed solids ranging from syenitic to granitic.A differentiation sequence is proposed by which each more evolvedcomposition is derived from the previous, less evolved liquidby fractionation and accumulation, occurring mainly along theroof of a slab-like magma chamber. As a layer of derivativemagma reaches a critical thickness, a new layer is formed, generatinga compositionally and density stratified magma chamber. KEY WORDS: high-silica rhyolite; partition coefficients; differentiation; zoned ash-flow tuff; layered convection  相似文献   

8.
Ilmari Haapala  Sari Lukkari 《Lithos》2005,80(1-4):347-362
The 6×3 km Kymi monzogranite stock represents the apical part of an epizonal late-stage pluton that was emplaced within the 1.65 to 1.63 Ga Wiborg rapakivi batholith. The stock has a well-developed zonal structure, from the rim to the center: stockscheider pegmatite, equigranular topaz granite, porphyritic topaz granite. The contact between the two granites is usually gradational within a few centimeters, but local inclusions of the porphyritic granite in the equigranular granite indicate that the latter solidified later. Hydrothermal greisen and quartz veins, some of which contain genthelvite, beryl, wolframite, cassiterite, and sulfides, cut the granites of the stock and the surrounding country rocks. The equigranular granite contains 1 to 4 vol.% topaz, and its biotite is lithian siderophyllite; the porphyritic granite has 0 to 3 vol.% topaz, and the mica is siderophyllite. The equigranular granite is geochemically highly evolved with elevated Li, Rb, Ga, Ta, and F, and very low Ba, Sr, Ti, and Zr. The REE patterns show deep negative Eu anomalies and tetrad effects indicating extreme magmatic fractionation and aqueous fluid–rock interaction. The zonal structure of the stock is interpreted as a result of differentiation within the magma chamber. Internal convection in the crystallizing magma chamber and upward flow of residual melt as a boundary layer along sloping contacts resulted in accumulation of a layer of highly evolved, volatile-rich magma in the apical part of the chamber. Crystallization of this apical magma produced the stockscheider pegmatite and the equigranular granite; the underlying crystal mush solidified as the porphyritic granite. Much of the crystallization took place from volatile-saturated melt, and episodic voluminous degassing expelled fluids into opened fractures where they or their derivatives reacted with country rocks and caused alteration and mineralization.  相似文献   

9.
对南岭地区侏罗纪4个典型"铝质"A型花岗岩岩基——柯树北、寨背、西山和南昆山的成因分析表明:柯树北、寨背岩基中的低分异花岗岩SiO2≈70%,A/CNK<1.1,CaO≥1%,高Zr、Ba含量,是下地壳部分熔融产物;而SiO2含量较高者由低分异花岗岩岩浆通过分离结晶演化而来。西山花岗质火山-侵入杂岩也是下地壳部分熔融产物。南昆山花岗岩为高硅花岗岩,贫Zr、低Ba、Sr和Eu/Eu*值,但具有高的Nb、Ga、REE含量和Ga/Al比值,在Whalen等(1987)图解中地球化学参数落在A型花岗岩区域内。碱性玄武岩浆分离结晶的成岩模式无法解释南昆山岩基较大的体积、均一的成分和低的Nb/Ta比值。详细的成岩分析表明,南昆山花岗岩可能是先期侵入的(幔源)碱性正长岩在富水和相对低温低压条件下发生部分熔融的产物。由这些"铝质"A型花岗岩的熔融温压条件估算得出热流值达到80~95mWm-2的南岭地区侏罗纪古地温线。由古地温线推算出的岩石圈厚度45~75km。南岭侏罗纪高热流背景及其对应的花岗质岩浆活动可能与后碰撞造山阶段岩石圈地幔拆沉或被"热侵蚀"有关,但并不一定意味着岩石圈伸展的大地构造环境。  相似文献   

10.
邱检生  李真  刘亮  赵姣龙 《地质学报》2012,86(4):561-576
漳浦复式花岗岩体位于福建东南沿海,为一由多期岩浆作用形成的大岩基,出露面积大于1500km2。按岩性特征,该复式岩体可肢解为长桥黑云母花岗岩、程溪碱长花岗岩和湖西花岗闪长岩3个单元。锆石LA-ICP-MS U-Pb定年结果表明,3个单元岩石的成岩年龄分别为119Ma、101Ma和96Ma。化学组成上,各单元岩石均具有亚碱、准铝或弱过铝、贫磷特征,它们的A/NKC值均在1.10以下,P2O5含量均低于0.20%,均可归为钙碱性的I型花岗岩。各单元岩石均富Cs、Rb、Th、U、Pb和轻稀土,贫Ba、Sr、P、Ti,但长桥和程溪单元较之湖西单元岩石Rb/Sr、Rb/Ba比值高,K/Rb比值低,并表现出更显著的铕负异常,指示各单元岩石的分异演化程度各不相同。3单元岩石具有较均一的Nd同位素组成,εNd(t)=-2.43~-3.24,tDM2=1.11~1.16Ga,但锆石Hf同位素组成普遍具有较大的变化范围,长桥、程溪和湖西3单元岩石的εHf(t)值分别为-8.3~+3.0、+1.7~+10.2和-2.5~+3.5,变化幅度均在6个εHf单位以上,反映岩体的形成存在不同来源物质的贡献。综合分析表明,各单元岩石的形成均经历了幔源岩浆与其诱发地壳物质熔融产生的长英质岩浆在地壳深部混合,随后又经不同程度结晶分异的二阶段成岩过程。各单元岩石之间显著的成岩时差及成分变异趋势指示复式岩体不可能为同一原始岩浆分异演化的产物,而最可能为演化程度各异的壳幔混源岩浆叠次侵位复合的结果。  相似文献   

11.
Petrographic, major-oxide, and trace-element data are presented for the Yozgat volcanics. These rocks range in composition from basalts through basaltic andesites and andesites to dacites. Major-oxide variations are largely explicable in terms of fractional crystallization, involving removal of observed phenocrysts and microphenocrysts. However, complex zoning patterns and resorbtion phenomena shown by phenocrysts in these lavas, and observed epitaxitic pyroxene growth around quartz xenocrysts imply that they are hybrids formed by a mixing process. In addition, observed enrichments in crustal elements such as K, Rb, Ba, Sr, and P provide clear evidence for the crustal assimilation of granitoid and metasedimentary xenoliths. The following model is suggested for the evolution of the Yozgat volcanics. The primitive magma underwent fractionation in an intracrustal magma chamber to yield more evolved liquids. Influx of hot, primitive magma into the magma chamber promoted vigorous convection-crustal assimilation and eruption of the volcanic rocks in the study area.  相似文献   

12.
A number of trace elements have been determined spectrographically in the rocks and minerals of the Skaergaard intrusion, East Greenland. The original basic magma from which the varied rocks of the complex were developed is shown to have had a normal trace element composition. The sorting out of the trace elements into the various mineral series produced by strong fractional crystallization of the original basic magma is traced in detail by means of analyses of the separated minerals. Certain of the trace elements (Cr, Ni) are shown to be strongly concentrated in the early rocks so that later fractions have little or none of them; other elements (P, V, Cu, Sc, Mn, S) reach maximum values in the middle, or late middle stages represented by certain olivine-free gabbros and ferrogabbros; other elements (Li, Zr, Y, La, Ba, Rb) tend to remain in the residual liquid during fractionation and are thus abundant in the latest granite fraction. Still other trace elements (Co, Sr, Ga, Mo) show only small changes in amount throughout the series. Of these Co is a little more abundant in the early and middle stages, Sr in the middle stages, Ga in the later stages and Mo in the early and later but not in the middle stages. The distribution of the trace elements in the rocks is considered in relation to the varying composition of the minerals produced by the fractional crystallization processes and an attempt is made to discuss the mineral compositions in terms of crystal chemical concepts.The Skaergaard sequence of differentiation from gabbros, through ferrogabbros, to granite is considered to be a common trend of fractionation of basic magma at high levels in the crust, and the observed changes in trace element composition are therefore regarded as having wide geochemical significance. The trace element composition of the intermediate Skaergaard differentiates is significantly different from that of diorites reported by other workers and suggests that diorites have had some other origin than by fractionation of basic magma. On the other hand the trace element composition of many granites resembles that of the granite fraction produced in the Skaergaard intrusion.  相似文献   

13.
Alkali granitoids (500-550 Ma) representing a prominent Pan-African magmatic event are widely distributed in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Geochemically, they are granitic to syenitic in composition and show an alkaline affinity of A-type granites. They are characterized by high K2O+Na2O (7-13 wt%) and K2O/Na2O (1-2), low to intermediate Mg#, wide ranges of SiO2 (45-78 wt%), Sr (20-6500 ppm) and Ba (40-13000 ppm) and have Nb and Ti depletion in the primitive mantle normalized diagram. The granitoids are subdivided into Group I granites, Group II granites, Lunckeryggen Syenitic Complex and Mefjell Plutonic Complex. The Group I granites have higher Mg#, Sr/Ba, Sr/Y, (La/Yb)N and LREE/HREE, lower A/CNK, SREE and initial 87Sr/87Sr ratios and lack Eu anomalies compared to those with negative Eu anomalies in the Group II granites. The syenitic rocks from the Mefjell Plutonic Complex are higher in alkali, Ga, Zr, Ba, and have lower Mg#, Rb, Sr, Nb, Y, F and LREE/HREE with positive Eu anomaly, whereas the granites from the Mefjell Plutonic Complex have high LREE/HREE ratios with negative Eu anomaly. The Lunckeryggen syenitic rocks have intermediate Mg#, higher K2O, P2O5, TiO2, Fe2O3/FeO, Ba, Sr/Y and LREE/HREE ratios with lack of Eu anomalies and are lower in Al2O3, Ga, Y, Nb and Rb/Sr ratios. Based on chemical characteristics combined with isotopic data, we suggest that the Lunckeryggen syenitic body and Group I granitic bodies may be derived from the mantle-derived hot basic magma by fractional crystallization with minor assimilation. We also suggest that the Group II granites may be derived from assimilation with crustal rocks to varing degrees and then fractional crystallization in higher crustal levels (ACF model). The Mefjell Plutonic Complex seems to be derived from a heterogenetic magma source compared with other granitoids from the Sør Rondane Mountains. The syenitic rocks in the Mefjell Plutonic complex have a unique source (iron-enriched) and have a chemical affinity with the charnockites in Gjelsvikjella and western Mühlig-Hofmannfjella, but not like the Yamato syenites in adjacent areas.  相似文献   

14.
岩浆长期分离结晶对岩石锶同位素初始比值的影响   总被引:6,自引:0,他引:6  
讨论了在岩浆长期分离结晶作用的模式,由于晚期残留熔体相对于早期结晶相其Rb/Sr比增高,当有一定滞留时间条件下,将导致晚期结晶相~(87)Sr/~(86)Sr初始比增高,因而在一个复式岩基内会形成具有不同锶同位素初始比的多个岩石单元。文中以安徽地洼阶段的黄山一狮子岭岩体为例,通过模拟计算,得到其初始岩浆(?)=0.7122,(Rb/Sr)0=3,该岩浆的80%分离结晶形成黄山岩体,其(?)=0.7143(t=130Ma),其余20%的残余熔体结晶后形成狮子岭岩体,其(?)=0.7180(t=123.1Ma)。  相似文献   

15.
The post-collision late-kinematic Tismana pluton belongs to the shoshonitic series. It is part of a Late Precambrian basement within the Alpine Danubian nappes of the South Carpathians (Romania). This pluton displays an exceptionally complete range of compositions from ultramafic to felsic rocks (granites). Widespread mingling/mixing relationships at all scales give rise to a variety of facies. A liquid line of descent from the diorites to the granites is reconstructed by considering the variation in major and trace elements (REE, Sr, Rb, Ba, Nb, Zr, Hf, Zn, V, Co, Cr, U, Th, Ga, Pb) from 33 selected samples as well as mineral/melt equilibrium relationships. The first step of fractional crystallization is the separation from a monzodioritic parent magma of a peridotitic cumulate similar to the ultramafic rock found in the massif. A possible contamination by lower crustal mafic component takes place at this stage. The second step marks the appearance of apatite and Fe–Ti oxide minerals as liquidus phases, and the third step, saturation of zircon. Mixing by hybridisation of magmas produced at different stages of the evolution along the liquid line of descent is also operating (endo-hybridisation). As depicted by Nd and Sr isotopes, fractional crystallization was combined to an important early contamination by a mafic lower crust in a deep-seated magma chamber and to a later and mild contamination by a felsic medium crust in an intermediate chamber. The mingling essentially occurred during the final emplacement in the high-level magma chamber. The monzodioritic parent magma, identified by major and trace element modelling, is shown by Sr and Nd isotopes to have its source in the lithospheric mantle or in a juvenile mafic lower crust derived from it. The necessarily recent enrichment in K2O and associated elements of the lithospheric mantle is likely to be related to the preceding Pan-African subduction period. The partial melting of this newly formed deep source has to be linked to a major change in the thermal state of the plate.  相似文献   

16.
High Ba-Sr granitoids occur in a number of tectonic settings, and variable petrogenetic models have been proposed. Those from post-collisional settings are rarely studied and are the focus of this study. Zircon U-Pb geochronology and whole-rock elemental and Sr-Nd-Hf isotopic data are presented for a suite of high Ba-Sr granitoids from the southern margin of the Alxa block, NW China. U-Pb zircon dating shows that the Xijing high Ba-Sr granitoids were emplaced in two periods at ~440 Ma and ~410 Ma, and they are characterized by elevated Ba and Sr contents. The older ~440 Ma high Ba-Sr granitoids range from monzodiorite to quartz monzonite, and the younger ~410 Ma high Ba-Sr granites tend to be more evolved. Both suites have similar enriched Sr-Nd-Hf isotopic ratios, low Ba/Th and Sr/Th ratios, and high Th contents and Th/Ce ratios indicative of a sediment contribution. This is potentially linked to previous subduction of the North Qilian ocean slab. Major and trace element calculations suggest that the older ~440 Ma granitoids experienced up to ~60% fractionation at 4–6 kbar with a crystallizing assemblage dominated by amphibole and plagioclase. The younger ~410 Ma granites could in turn have been formed by a further 80% fractional crystallization at lower pressures (1–2 kbar). Trace element and Sr-Nd isotopic modeling suggest incorporation of ~5% slab-derived sediment into mantle magma source of these high Ba-Sr granitoids. We note that post-collisional granitoids with high Ba and Sr characteristics may also reflect a sediment contribution in their source region, and this may be a key aspect of why such granites plot in the field of post-collisional granites in the Rb vs Y + Nb diagram. Some sanukitoids with high Ba and Sr contents in the late Archean also appear to reflect sediment subduction and they hence may represent early stages of crustal recycling.  相似文献   

17.
福建沿海中生代变质带中花岗质岩石的地球化学   总被引:12,自引:1,他引:12  
周旋  于津海 《地球化学》2001,30(3):282-292
福建东南沿海中生代变质带的花岗质岩石分布于东山、晋江和莆田等广大地区。花岗岩中常包含黑云母、石榴子石或白云母。但地球化学研究表明,这些花岗岩属于钙碱性或高钾钙碱性,以低Rb、Zr、Hf、Nb、Y、Ga含量和Rb/Sr比值,以及高Ba、Sr丰度为特征,属于典型的Ⅰ型花岗岩。它们的稀土总量普遍较低,具有轻稀土富集、铕中等亏损的稀土分布模式。本带三个地区花岗岩的微量元素组成存在一定差异,但具有相似的Sr、Nd同位素组成,以高εNd(t)(-4.49~-3.15)和低ISr(0.7055-0.7074)、tDM(1.19-1.29Ga)为特征。地球化学研究显示本带花岗岩形成于相同的构造背景-大型边缘火山弧环境。其母岩浆是由类似于麻源群的古老火成变质岩部分熔融产生的熔融体与同期的幔源玄武质岩浆发生一定程度混合而成。不同地区或同一地区花岗岩地球化学组成上的差异是不同程度的部分熔融和结晶分异的结果。  相似文献   

18.
A型花岗岩的微量元素地球化学   总被引:28,自引:1,他引:27  
本文总结和评述了A型花岗岩典型的微量元素特征,如富集Ga、稀土元素(除Eu外)和高场强元素,亏损Ba、Sr和明显的Eu负异常。分别讨论了影响微量元素特征的多种制约因素,主要包括源区性质、岩浆的物理化学条件、岩浆作用过程和络合作用。通过对比世界范围内几个地区相伴生的碱性A型花岗岩和铝质A型花岗岩的微量元素地球化学特征,发现前者Ga、F含量更高,而轻重稀土比值小,Eu、Ba、Sr等元素含量更低,显示了前者的岩浆分异作用更强,同时说明了碱性A型花岗岩可以由与之伴生的铝质A型花岗岩分异而来。  相似文献   

19.
The Davis Lake pluton (DLP, ~800 km2) of southwestern Nova Scotia, Canada, part of the large peraluminous South Mountain batholith of ca. 380 Ma (U/Pb zircon, Ar/Ar mica), consists of granite and subordinate topaz–muscovite leucogranite that hosts greisen tin-base metal mineralization. A new Pb–Pb isochron age for leucogranite from the most evolved part of the DLP indicates a crystallization age of 378±3.6 Ma, coincident with other radiometric ages of the DLP (Rb–Sr, Re–Os, Pb–Pb). The intrusion displays a compositional zonation defined by lead and strontium isotopic ratios, as well as some major elements (e.g., Si, F), incompatible trace elements (e.g., Li, Rb, Ta, U, Sn), and elemental ratios (e.g., K/Rb and Nb/Ta). The greisens and the leucogranites that host them are characterized by extreme radiogenic compositions for Pb and Sr, and their chemical-isotopic trends are extensions of the trends displayed by the less evolved granites. The covariations of the isotopic ratios with several major and trace elements and elemental ratios as well as the Pb–Pb and Rb–Sr isochrones indicate that all phases of the intrusion originated from a homogeneous parental magma. The granitoid magma underwent extensive fractional crystallization of feldspars, minor biotite and accessory minerals (monazite, apatite and zircon) in a compositionally zoned magma chamber that was subsequently accompanied by fluid fractionation, during which time the internally derived fluorine-rich fluids modified the Rb/Sr, U/Pb and Th/Pb ratios, leading to distinct variations of 87Sr/86Sr, 206Pb/204Pb, 238U/204Pb and 232Th/204Pb isotopic ratios. These data therefore document the evolution of a granitic magma through magmatic (i.e., crystal fractionation), orthomagmatic (i.e., crystal-fluid fractionation) and hydrothermal (i.e., fluid fractionation) stages that culminated in the formation of a tin-base metal deposit. The Pb isotope data also constrain the source region for the DLP as being Avalonian basement that, by inference, must underlie much of the Meguma Terrane.Editorial responsibility: T.L. Grove  相似文献   

20.
The dynamical behaviour of basaltic magma chambers is fundamentally controlled by the changes that occur in the density of magma as it crystallizes. In this paper the term fractionation density is introduced and defined as the ratio of the gram formula weight to molar volume of the chemical components in the liquid phase that are being removed by fractional crystallization. Removal of olivine and pyroxene, whose values of fractionation density are larger than the density of the magma, causes the density of residual liquid to decrease. Removal of plagioclase, with fractionation density less than the magma density, can cause the density of residual liquid to increase. During the progressive differentiation of basaltic magma, density decreases during fractionation of olivine, olivine-pyroxene, and pyroxene assemblages. When plagioclase joins these mafic phases magma density can sometimes increase leading to a density minimum. Calculations of melt density changes during fractionation show that compositional effects on density are usually greater than associated thermal effects.In the closed-system evolution of basaltic magma, several stages of distinctive fluid dynamical behaviour can be recognised that depend on the density changes which accompany crystallization, as well as on the geometry of the chamber. In an early stage of the evolution, where olivine and/or pyroxenes are the fractionating phases, compositional stratification can occur due to side-wall crystallization and replenishment by new magma, with the most differentiated magma tending to accumulate at the roof of the chamber. When plagioclase becomes a fractionating phase a zone of well-mixed magma with a composition close to the density minimum of the system can form in the chamber. The growth of a zone of constant composition destroys the stratification in the chamber. A chamber of well-mixed magma is maintained while further differentiation occurs, unless the walls of the chamber slope inwards, in which case dense boundary layer flows can lead to stable stratification of cool, differentiated magma at the floor of the chamber.In a basaltic magma chamber replenished by primitive magma, the new magma ponds at the base and evolves until it reaches the same density and composition as overlying magma. Successive cycles of replenishment of primitive magma can also form compositional zonation if successive cycles occur before internal thermal equilibrium is reached in a chamber. In a chamber containing well-mixed, plagioclase — saturated magma, the primitive magma can be either denser or lighter than the resident magma. In the first case, the new magma ponds at the base and fractionates until it reaches the same density as the evolved magma. Mixing then occurs between magmas of different temperatures and compositions. In the second case a turbulent plume is generated that causes the new magma to mix immediately with the resident magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号