首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
This work reports the synthesis of ferri-clinoholmquistite, nominally Li2(Mg3Fe3+2)Si8O22(OH)2, at varying fO2 conditions. Amphibole compositions were characterized by X-ray (powder and single-crystal) diffraction, microchemical (EMPA) and spectroscopic (FTIR, Mössbauer and Raman) techniques. Under reducing conditions ( NNO+1, where NNO = Nickel–Nickel oxide buffer), the amphibole yield is very high (>90%), but its composition, and in particular the FeO/Fe2O3 ratio, departs significantly from the nominal one. Under oxidizing conditions ( NNO+1.5), the amphibole yield is much lower (<60%, with Li-pyroxene abundant), but its composition is close to the ideal stoichiometry. The exchange vector of relevance for the studied system is M2(Mg,Fe2+) M4(Mg,Fe2+) M2Fe3+–1 M4Li–1, which is still rather unexplored in natural systems. Amphibole crystals of suitable size for structure refinement were obtained only at 800 °C, 0.4 GPa and NNO conditions (sample 152), and have C2/m symmetry. The X-ray powder patterns for all other samples were indexed in the same symmetry; the amphibole closest to ideal composition has a = 9.428(1) Å, b = 17.878(3) Å, c = 5.282(1) Å, = 102.06(2)°, V = 870.8(3) Å3. Mössbauer spectra show that Fe3+ is strongly ordered at M2 in all samples, whereas Fe2+ is disordered over the B and C sites. FTIR analysis shows that the amount of CFe2+ increases for increasingly reducing conditions. FTIR data also provide strong evidence for slight but significant amounts of Li at the A sites.  相似文献   

2.
为了厘清磁铁矿成分测试过程中Fe2+/Fe3+比值分析各种方法的准确性及适用范围;采用直接测氧法、Lβ/Lα强度比值法、电价差值法、剩余氧法和穆斯堡尔谱法,对祁漫塔格成矿带中典型矿床中磁铁矿的Fe2+/Fe3+比值进行了研究,结果表明电价差值法、剩余氧法和穆斯堡尔谱法是相对比较准确的测试方法,但穆斯堡尔谱法不是原位分析方法,存在适用范围的缺陷。  相似文献   

3.
A new mineral eurekadumpite found at the Centennial Eureka Mine in the Tintic district of Juab County in Utah in the United States occurs in the oxidation zone along with quartz, macalpineite, malachite, Zn-bearing olivenite, goethite, and Mn oxides. Eurekadumpite forms spherulites or rosettes up to 1 mm in size and their clusters and crusts up to 1.5 cm2 in cavities. Its individuals are divergent and extremely thin (up to 0.5 mm across and less than 1 μm thick) hexagonal or roundish leaflets. The mineral is deep blue-green or turquoise-colored. Its streaks are light turquoise-colored. Its luster is satiny in aggregates and pearly on individual flakes. Its cleavage is (010) perfect and micalike. Its flakes are flexible but inelastic. Its Mohs hardness is 2.5–3.0, and D(meas) = 3.76(2) and D(calc) = 3.826 g/cm3. The mineral is optically biaxial negative, and α = 1.69(1), β ∼ γ = 1.775(5), and 2V meas = 10(5)°. Its pleochroism is strong: Y = Z = deep blue-green, and X = light turquoise-colored. Its orientation is X = b. The wavenumbers of the bands in the IR spectrum (cm−1; the strong lines are underlined, and w denotes the weak bands) are 3400, 2990, 1980w, 1628, 1373w, 1077, 1010, 860, 825, 803, 721w, 668, 622, 528, 461. The IR spectrum shows the occurrence of the tellurite (Te4+,O3)2− and arsenate (As5+,O4)3− anionic groups and H2O molecules; Cu and Zn cations are combined with OH groups. The chemical composition of eurekadumpite is as follows (wt %, average of 14 electron-microprobe analyses; H2O determined using the Alimarin method): 0.04 FeO, 36.07 CuO, 20.92 ZnO, 14.02 TeO2, 14.97 As2O5, 1.45 Cl, 13.1 H2O, O = Cl2 −0.33, total 100.24. The empirical formula based on 2 Te atoms is (Cu10.32Zn5.85Fe0.01)Σ16.18(TeO3)2(AsO4)2.97[Cl0.93(OH)0.07]Σ1(OH)18.45 · 7.29H2O. The idealized formula is (Cu,Zn)16(TeO3)2(AsO4)3Cl(OH)18 · 7H2O. Eurekadumpite is monoclinic (pseudohexagonal), and the most probable space groups are P2/m, P2, or Pm. The unit-cell parameters refined from the powder X-ray data are as follows: a = 8.28(3), b = 18.97(2), c = 7.38(2) ?, β = 121.3(6)°, V = 990(6) ?3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, ? (I) [hkl]) are as follows: 18.92(100) [010], 9.45(19) [020], 4.111(13) [[`2]\bar 2 01], 3.777(24) [050, [`2]\bar 2 21, 041], 2.692(15) [[`3]\bar 3 11, 151, [`3]\bar 3 02], 2.524(41)[170, [`2]\bar 2 52, [`1]\bar 1 71], 1.558(22) [[`4]\bar 4 82, [`3]\bar 3 .10.1, 024]. The name of the mineral means, firstly, that it was found in specimens from dumps of the Centennial Eureka Mine. In addition, it could mean found in a dump (the Greek word eureka means I have found it). There is an allusion to the great role that dumps of abandoned mines have played in the discovery of new minerals. Type specimens are deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow, at the Smithsonian National Museum of Natural History in Washington, and at the American Museum of Natural History in New York.  相似文献   

4.
Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10$ \bar 1 $ \bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO42−, H2O, and absence of CO32−. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), −0.10 −O=Cl2, total is 100.33. The empirical formula (Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) ?; V = 11495(1) ?3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence (ABCABCACACBACBACBCACBACBACBABC). The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) (hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of biachellaite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 3642/1.  相似文献   

5.
Pyrope-knorringite garnets, Mg3(Al1-X Cr3+X)2Si3O12 with X=0.25, 0.50, and 1.00, were synthesized between 9 and 16 GPa and 1300 and 1600 °C, using multianvil high-pressure techniques. The garnets with X=0.25 and 0.50 are fine-grained, pink and violet in color. The end-member knorringites with X=1.00 are black when compact and gray when coarse-grained. The fine powder is greenish gray in natural light and pale pink under a tungsten lamp. Powder remission spectra in the wavenumber range 30 000–10 000 cm–1 on finely powdered crystals were measured by two different methods: (I.) by the use of a small integrating sphere for small samples or (II.) microscope-spectrometric measurement using diffusely reflected radiation from a 45° illuminated microsample. Both methods yielded similar diffuse reflectance spectra. The following crystal-field parameters of [6]Cr3+ were determined for garnets with X=0.25, 0.50, 1.00: 10 Dq=17 856, 17 596, 17 286 cm–1; and B=654, 677, 706 cm–1; nephelauxetic ratio =(Bfield/Bfree)= 0.71, 0.74, 0.77. The -values indicate decreasing covalency of the Cr–O bond with increasing Cr content. The 10 Dq value for together with the mean Cr–O distance in end-member knorringite, 1.96 Å (Novak and Gibbs 1971), were used to calculate from the spectral data, local mean Cr–O distances (Langer 2001a) as a function of composition. The results indicate relatively strong local site relaxation with a value of =0.77.  相似文献   

6.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

7.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

8.
This paper presents data on burovaite-Ca, the first Ti-dominant member of the labuntsovite group with a calcium D-octahedron. The idealized formula of burovaite-Ca is (K,Na)4Ca2(Ti,Nb)8[Si4O12]4(OH,O)8 · 12H2O. The mineral has been found in the hydrothermal zone of aegirine-microcline pegmatite located in khibinite at Mt. Khibinpakhkchorr, the Khibiny pluton, Kola Peninsula, Russia. Radiaxial intergrowths of burovaite-Ca and labuntsovite-Mn associated with lemmleynite-Ba, analcime, and apophyllite have been identified in caverns within microcline. The mean composition of the mineral is as follows, wt %: 3.72 Na2O, 2.76 K2O, 4.22 CaO, 0.47 SrO, 0.23 BaO, 0.01 MnO, 0.30 Fe2O3, 0.14 Al2O3, 42.02 SiO2, 17.30 TiO2, 15.21 Nb2O5, 12.60 H2O (measured); the total is 98.98. Its empirical formula has been calculated on the basis of [(Si,Al)16O48]: {(Na3.10K1.07Ca0.37Sr0.04Ba0.04)4.62}(Ca1.28Zn0.01)1.29(Ti4.97Nb2.56Fe0.08Ta0.02)7.63(Si15.93Al0.07)16O48(OH6.70O0.93)7.63 · 12H2O. The strongest lines in the X-ray powder diffraction pattern of burovaite-Ca (I-d ?] are as follows: 70–7.08, 40–6.39, 40–4.97, 30–3.92, 40–3.57, 100–3.25, 70–3.11, 50–2.61, 70–2.49, 40–2.15, 50–2.05, 70–1.712, 70–1.577, and 70–1.444. The structure of burovaite-Ca was solved by A.A. Zolotarev, Jr. The mineral is monoclinic, space group C2/m. The unit-cell dimensions are a = 14.529(3), b = 14.203(3), c = 7.899(1), β = 117.37(1)°, V = 1447.57 ?3. Burovaite-Ca is an isostructural Ti-dominant analogue of karupm?llerite-Ca and gjerdingenite-Ca. Two stages of mineral formation—pegmatite proper and hydrothermal—have been recognized in the host pegmatite. The hydrothermal stage included K-Ba-Na, Na-K-Ca, and Na-Sr substages. Burovaite-Ca is related to the intermediate Na-K-Ca substage. At the first substage, labuntsovite-Mn and lemmleynite-Ba were formed, and tsepinite-Na, paratsepinite-Nd, and tsepinite-Sr were formed at the final substage. Thus, the sequence of crystallization of labuntsovite-group minerals is characterized by the replacement of the potassium regime by the sodium regime of alkaline solutions in the evolved host pegmatite.  相似文献   

9.
作为表生土壤环境中易生成且分布广泛的氧化锰矿物,水锰矿(γ-MnOOH)能参与铁氧化物的生成过程,影响Fe_(2+)的迁移、转化和归趋。本文考察了pH值为3.0~7.0的模拟水溶液体系中水锰矿与Fe_(2+)的相互作用及其生成铁氧化物的过程,分析了Fe_(2+)浓度、pH值和空气(氧气)对Fe(Ⅲ)氧化物晶体结构类型、化学组成和反应速率的影响。研究结果表明,水锰矿氧化Fe_(2+)产物主要为针铁矿和纤铁矿;pH值为3.0~5.0时产物为针铁矿,而pH值为7.0时产物为针铁矿与纤铁矿的混合物,且高浓度Fe_(2+)会促使纤铁矿生成;引入空气利于针铁矿生成;反应速率随着pH值升高、氧气分压的增大而加快。本工作丰富了对铁氧化物在常见锰氧化物表面形成和转化过程的认识。  相似文献   

10.
Florencite-(Sm), a new mineral species of the florencite subgroup, was found in association with xenotime-(Y) in quartz veins of the Maldynyrd Range of the Subpolar Urals as thin zones within rhombohedral crystals of florencite-(Ce) with faceting by { 01[`1]1}\{ 01\bar 11\} and { 10[`1]2}\{ 10\bar 12\} . The thickness of particular florencite-(Sm) zones is 0.01–0.1 mm, and the total thickness of a series of such zones is 1–3 mm. Florencite-(Sm) is colorless and pale pink or pale yellow with white streaks; its Mohs hardness is 5.5–6.0. Its measured and calculated densities are 3.70 and 3.743 g/cm3, respectively. The mineral is transparent, nonpleochroic, and uniaxial (positive), and ω = 1.704(2) and ɛ = 1.713(2). The electron beam’s fluorescence spectrum was 592 nm (intense green luminescence of Sm3+) and 558 nm (yellow luminescence of Nd3+). The chemical composition was as follows (microprobe, average of 2 WDS, wt %): 0.62 La2O3, 3.29 Ce2O3, 1.05 Pr2O3, 10.31 Nd2O3, 12.62 Sm2O3, 0.41 Eu2O3, 2.30 Gd2O3, 0.13 Dy2O3, 0.71 SrO, 0.35 CaO, 29.89 Al2O3, 26.14 P2O5, 0.85 SO3, 0.09 SiO2, 88.76 in total; 10.74 H2O (meas.). The empirical formula based on 14 oxygen atoms is (Sm0.38Nd0.32Gd0.07Ce0.10Pr0.03La0.02Eu0.01Sr0.04Ca0.03)1.0Al3.04(P1.91S0.05Si0.01)1.97O14H5.92. The idealized formula is (Sm,Nd)Al3(PO4)2(OH)6. Mineral is trigonal, space group R3m, a = 6.972(4), c = 16.182(7) ?, V = 681.2 ?3, Z = 3. The XRD pattern is as follows: dln (I) (hkl): 2.925 (10) (113), 1.881 (6) (303), 2.161 (5) (107), 5.65 (4) (101), and 3.479 (4) (110). The IR spectrum: 466, 510, 621, 1036, 1105, 1223, 2957, and 3374 cm−1.  相似文献   

11.
1974年在一水晶矿石英脉晶洞中,发现了一种含Ba、Li的硅酸盐新矿物--纤钡锂石。我们对纤钡锂石进行了光性研究、比重测定、差热及热失重分析、红外光谱分析、X射线单晶结构分析等工作,现分述如下。  相似文献   

12.
桑世华  李明  李恒  孙明亮 《地质学报》2010,84(11):1704-1707
采用等温溶解平衡法研究了288K时Li+, Mg2+//SO2-4, B4O2-7- H2O四元体系的固液相平衡关系,测定了该四元体系在288K时平衡液相的溶解度和密度。依据实验测定的平衡溶解度数据及对应的平衡固相,绘制了该四元体系的平衡相图及密度组成图。研究结果表明:交互四元体系Li+, Mg2+//SO2-4, B4O2-7- H2O 288K时平衡相图中有2个共饱点,5条单变量曲线,4个结晶区对应的平衡固相分别为Li2B4O7·3H2O,Li2SO4·H2O,MgB4O7·9H2O和MgSO4·7H2O。  相似文献   

13.
14.
In the course of a thorough study of the influences of the second coordination sphere on the crystal field parameters of the 3d N -ions and the character of 3d N –O bonds in oxygen based minerals, 19 natural Cr3+-bearing (Mg,Ca)-garnets from upper mantle rocks were analysed and studied by electronic absorption spectroscopy, EAS. The garnets had compositions with populations of the [8] X-sites by 0.881 ± 0.053 (Ca + Mg) and changing Ca-fractions in the range 0.020 ≤ w Ca[8] ≤ 0.745, while the [6] Y-site fraction was constant with x Cr3+ [6] = 0.335 ± 0.023. The garnets had colours from deeply violet-red for low Ca-contents (up to x Ca = 0.28), grey with 0.28 ≤ x Ca ≤ 0.4 and green with 0.4 ≤ x Ca. The crystal field parameter of octahedral Cr3+ 10Dq decreases strongly on increasing Ca-fraction from 17,850 cm−1 at x Ca[8] = 0.020 to 16,580 cm−1 at x Ca[8] = 0.745. The data could be fit with two model which do statistically not differ: (1) two linear functions with a discontinuity close to x Ca[8] ≈ 0.3,
(2) one continuous second order function,
The behaviour of the crystal field parameter 10Dq and band widths on changing Ca-contents favour the first model, which is interpreted tentatively by different influences of Ca in the structure above and below x Ca[8] ≈ 0.3. The covalency of the Cr–O bond as reflected in the behaviour of the nephelauxetic ratio decreases on increasing Ca-contents.  相似文献   

15.
采用等温溶解平衡法开展了三元体系K+,Mg2+∥B4O72--H2O 348K的稳定相平衡研究,获得溶解度数据及平衡液相的密度,折光率,pH值。根据溶解度数据绘制了三元体系稳定相图。该三元体系在348K时的稳定相图含有一个共饱点E、两条单变量曲线AE,BE和两个结晶相区MgB4O7.9H2O(AECA)和K2B4O7·4H2O(BEDB)。共饱点的平衡固相组成为MgB4O7·9H2O和K2B4O7·4H2O,对应的平衡液相组成为w(K2B4O7)=42.28%、w(MgB4O7)=8.11%。研究结果表明,该三元体系属于简单共饱和型,无复盐和固溶体形成。K2B4O7·4H2O和MgB4O7·9H2O互相存在盐溶作用,使得这两种盐的溶解度明显增大。平衡液相的密度、折光率均随溶液中K2B4O7质量分数的增大而增大。  相似文献   

16.
纤钡锂石产于湖南临武香花岭地区一水晶矿锂云母石英脉晶洞中,与锂云母、石英等矿物共生。矿物为浅黄白色,丝绢光泽,呈针状、纤维状、放射状或平行束状集合体,纤维长达1厘米。经X射线单晶及粉晶衍射测定:该矿物属斜方晶系,空间群Ccca,晶胞参数:a=13.60(?),b=20.24(?),e=5.16(?)。最强衍射线为:10.12(?)(100) 4.05(?)(78) 3.39(?)(91) 2.605(?)(31)2.390(?)(28)。  相似文献   

17.
锡铁山石晶体结构中Fe3+的两种亚晶位   总被引:1,自引:0,他引:1  
对产于青海锡铁山铅锌矿氧化带中的锡铁山石进行了57Fe穆斯堡尔谱的研究,在晶体结构分析的基础上进行了谱峰的重新解释,发现由于配位Cl-离子无序占位引起Fe3+离子所占配位八面体的畸变,形成了Fe3+的两种亚晶位,并根据结构数据指定了这两种亚晶位各自形成的四极双峰。  相似文献   

18.
The high temperature volume and axial parameters for six C2/c clinopyroxenes along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 joins were determined from room T up to 800°C, using integrated diffraction profiles from in situ high temperature single crystal data collections. The thermal expansion coefficient was determined by fitting the experimental data according to the relation: ln(V/V 0) = α(T T 0). The thermal expansion coefficient increases by about 15% along the jadeite–hedenbergite join, whereas it is almost constant between jadeite and aegirine. The increase is related to the Ca for Na substitution into the M2 site; the same behaviour was observed along the jadeite–diopside solid solution, which presents the same substitution at the M2 site. Strain tensor analysis shows that the major deformation with temperature occurs in all samples along the b axis; on the (010) plane the higher deformation occurs in jadeite and aegirine at a direction almost normal to the tetrahedral–octahedral planes, and in hedenbergite along the projection of the longer M2–O bonds. The orientation of the strain ellipsoid with temperature in hedenbergite is close to that observed with pressure in pyroxenes. Along the jadeite–aegirine join instead the high-temperature and high-pressure strain are differently oriented.  相似文献   

19.
以齐齐哈尔碾子山麦饭石为研究对象,通过比表面积及孔隙分析、阳离子交换容量(CEC)测试以及p H值缓冲能力测试等,对碾子山区麦饭石的结构和性能进行表征,并进一步研究麦饭石对Pb~(2+)、Cd~(2+)、Cr~(3+)的吸附行为。结果显示:碾子山区麦饭石具有海绵体大孔结构,阳离子交换容量(CEC)13~20 mmol/100 g。碾子山麦饭石对酸碱溶液都具有较好的调节能力,尤其对酸液的调节更高效。重金属吸附性能方面,对Pb~(2+)、Cd~(2+)、Cr~(3+)这3种离子吸附关系为:Pb~(2+)Cr~(3+)Cd~(2+)。  相似文献   

20.
无机材料以兼容性强、耐久性好等特点被广泛应用于土遗址加固,特别疏松结构土遗址加固一直是学界关注的焦点,微纳米Ca(OH)2具有分子结构小、加固效果显著和耐久性好等特点。以世界文化遗产锁阳城为代表,制备密度为1.5g/cm3的疏松土样,采用浓度为5%、7.5%和10%微纳米Ca(OH)2的悬浊液滴渗加固,通过透气性、色差、无侧限抗压强度和抗剪强度测试发现,透气性下降值均在2%以内,5%和7.5%微纳米Ca(OH)2加固后色差ΔEab*均小于4,在一定范围内可接受;其中用浓度为7.5%微纳米Ca(OH)2加固3次后抗压强度和抗剪强度均有提高,无侧限抗压强度增长率为9.8%,土的黏聚力增加了34%,内摩擦角提高了9°;土-水特征曲线表明,微纳米Ca(OH)2对土的体积收缩率具有较好的抑制作用。扫描电镜、X射线衍射和热重分析发现,微纳米Ca(OH)2渗透加固后,在碱性环境下发生了的物理化学反应,在物理层面主要通过填充、包...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号