首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper gathered available flow and transport solutions and used them for two composite liners, consisting of geomembrane (GM) overlying either a compacted clay liner (CCL) or a geosynthetic clay liner (GCL). Its aim is to provide a guiding framework for the possible choices of (a) approaches to bottom liner design, (b) respective analytical solutions to flow and transport equations, as well as (c) parameters required for each type of solution. On the basis of the obtained results, the following recommendations are made. When the goal of analysis is to determine material equivalency, leachate flow rate is an adequate key parameter for GM-CCL composite liners. For GM-GCL composite liners, it is necessary to compute contaminant concentration or mass flux, considering (a) transport through defects for inorganic contaminants and (b) diffusion and the contribution of any available attenuation layer for organic contaminants. When the goal of analysis is to assess impact to groundwater, it is advised to calculate both discharge rate and contaminant mass flux regardless of liner type. The critical parameter for the transport calculations is the retardation factor of the contaminant, for the case of CCLs, while the results for GCLs are much less sensitive to this parameter.  相似文献   

2.
An analytical solution for one-dimensional contaminant diffusion through multi-layered media is derived regarding the change of the concentration of contaminants at the top boundary with time. The model accounts for the arbitrary initial conditions and the conditions of zero concentration and zero mass flux on the bottom boundary. The average degree of diffusion of the layered system is introduced on the basis of the solution. The results obtained by the presented analytical solutions agree well with those obtained by the numerical methods presented in the literature papers. The application of the analytical solution to the problem of landfill liner design is illustrated by considering a composite liner consisting of geomembrane and compacted clay liner. The results show that the 100-year mass flux of benzene at the bottom of the composite liner is 45 times higher than that of acetone for the same composite liner. The half-life of the contaminant has a great influence on the solute flux of benzene diffused into the underlying aquifer. Results also indicates that an additional 2.9–5.0 m of the conventional (untreated) compacted clay liner under the geomembrane is required to achieve the same level of protection as provided by 0.60 m of the Hexadecyltrimethylammonium (HDTMA)-treated compacted clay liners in conjunction with the geomembrane. Applications of the solution are also presented in the context of a contaminated two-layered media to demonstrate that different boundary and initial conditions can greatly affect the decontamination rate of the problem. The method is relatively simple to apply and can be used for performing equivalency analysis of landfill liners, preliminary design of groundwater remediation system, evaluating experimental results, and verifying more complex numerical models.  相似文献   

3.
CCL吸附特性及孔隙率降低对污染物运移的影响   总被引:1,自引:0,他引:1  
张金利  栾茂田  杨庆 《岩土力学》2008,29(5):1181-1187
假定孔隙均匀地分布于土体的物质空间内和土骨架对污染物的吸附特性服从平衡线性,对基本体积质量关系进行分析,提出了由于土体对污染物的吸附而引起的孔隙率降低的估算公式。在考虑土体孔隙率变化的条件下,建立了污染物一维运移的控制方程,并考虑垃圾生物降解效应、压实黏土衬里(CCL)防渗层、下覆有限厚度含水层等实际情况,确定了初始条件和边界条件。对所建立的初边值问题进行了数值求解,且对某假想填埋场情况进行了变动参数与对比计算,结果表明,由于土颗粒对污染物的吸附所引起的孔隙率降低,显著地降低了污染物对压实黏土衬里的穿透能力。与常孔隙率情况相比,CCL中污染物的峰值浓度降低近10 %,含水层中污染物浓度降低更显著。当考虑土体孔隙率变化时,弥散对污染物运移具有控制作用,分布系数对污染物的运移具有重要影响。  相似文献   

4.
土工合成材料粘土衬垫(GCL)与土工膜(GM)形成的复合衬垫在垃圾填埋场中的应用日益广泛。我国规范中允许在特殊情况下用GCL代替压实粘土(CCL)做垃圾填埋场的衬垫,但是对于“特殊情况”没有明确说明。本文采用数值方法对复合衬垫中无机污染物的对流和扩散进行了计算,从衬垫底部污染物通量和累积量两个角度对GCL复合衬垫和CCL复合衬垫阻滞污染物运移的效果进行了比较,分析两种复合衬垫的等效性,并研究了GCL复合衬垫的适用范围。结果表明,当渗滤液水头较高时,GCL复合衬垫体现出其优势。  相似文献   

5.
One‐dimensional mathematical models for vapor‐phase volatile organic compound (VOC) diffusion through composite cover barriers are presented. An analytical solution to the model was obtained by the method of separation of variables. The results obtained by the proposed solution agree well with those obtained by a numerical analysis. Based on the proposed analytical model, the VOC breakthrough curves of five different composite covers are compared. The effects of degree of saturation of geosynthetic clay liner (GCL) or compacted clay liner (CCL) on VOC migration in the composite covers are then presented. Results show that the composite cover barriers provide much better diffusion barriers for VOC than the single CCL. The top surface steady‐state flux for a composite barrier, consisting of a 1.5 mm geomembrane (GM) and a 20 cm CCL, can be 8.3 times lower than that for a 30 cm CCL. The surface steady‐state flux for the case with (1.5 mm GM + 6 mm GCL) was found to be 2.3 times lower than that for the case with (1.5 mm GM + 20 cm CCL). The degree of saturation Sr of the CCL has a great influence on VOC migration in composite covers when Sr is larger than 0.5. The steady‐state flux at the surface of GM for the case with Sr = 0.7 can be 1.8 times lower than that for the case with Sr = 0.2. The proposed analytical model is relatively simple and can be used for verification of complicated numerical models, analysis of experimental data and performance assessment of composite cover barriers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the study conducted on the performance of landfill liner interface parameters. Interface shear strength parameters for various combinations of 9 different lining materials were studied and presented in this paper. This comprehensive testing program covers the interfaces between: (1) soil and compacted clay liner (CCL), (2) geomembrane (HDPEs or PVC) and soil, (3) geosynthetic clay liner (GCL)/CCL and soil, (4) geomembrane and geotextile, (5) geotextile and soil, (6) geotextile and GCL/CCL, and (7) geomembrane and GCL/CCL. The experiments were conducted for both at dry or optimum moisture condition and at saturated or wet condition. The interface performance under both conditions were compared to access the material performances. Tabulated summaries of interface test data under dry or optimum moisture condition (OMO) and saturated or wet condition are presented in the paper.  相似文献   

7.
有机污染物在完好复合衬垫中的迁移分析   总被引:1,自引:0,他引:1  
何俊  何世秀  胡其志 《岩土力学》2009,30(6):1653-1657
在复合衬垫中,有机污染物除了在土工膜缺陷处发生迁移外,在完好土工膜中的迁移也是主要方式。考虑有机污染物在土工膜边界处的浓度跳跃现象,建立了有机污染物在完好复合衬垫中迁移的一维模型,得到了解析解。通过与有限差分解的比较,验证了解答的合理性。应用该解答分析了GCL复合衬垫和CCL复合衬垫防止有机污染物渗漏的效果。结果表明,CCL复合衬垫的效果较好,可以通过黏土改性和增加黏土厚度的方法来提高其有效性。有机污染物类型的选择对GCL复合衬垫的分析结果影响较大,而阻滞系数的变化对分析结果影响较小。  相似文献   

8.
邱金伟  权全  刘军  童军  胡波 《岩土力学》2022,43(2):423-431
利用广义积分变换法推导了非等温条件下污染物在压实黏土衬垫中的运移解析解。所提出的解析解考虑了分子扩散、对流、吸附和热扩散的耦合效应,并考虑了压实黏土的渗透系数、分布系数和有效扩散系数3个参数随温度的变化。通过与热扩散试验结果、已有的解析解和基于COMSOL软件的数值模型的对比,验证了所提出的解析解。利用经过验证的解析解,研究了非等温环境以及压实黏土的渗透系数、有效扩散系数和分布系数3个参数随温度的变化对甲苯在压实黏土衬垫系统中迁移的影响。结果表明,非等温环境以及压实黏土的渗透系数、有效扩散系数和分布系数随温度的变化均对甲苯在压实黏土衬垫中迁移有着显著的影响。不考虑非等温环境的影响将极大低估污染物的溢出量和污染物的击穿时间。既有解析解忽略压实黏土的渗透系数和有效扩散系数随温度的变化会极大低估甲苯的流出速率,而忽略压实黏土分布系数随温度的变化会极大高估甲苯击穿衬垫系统的时间和达到稳态的时间。所提出的解析解能够考虑热扩散作用,同时考虑了压实黏土的渗透系数、分布系数和有效扩散系数3个参数随温度的变化,较既有解析解更贴近工程实际,能够为压实黏土衬垫系统的设计和服役性能评价提供指导和借鉴。  相似文献   

9.
Finite‐element models of contaminant transport through composite landfill liners require highly refined meshes around the interface between the geomembrane and the clay layer, especially if leakage through holes in the geomembrane is considered. In addition, no general formulation for transport through leaking geomembranes can be found in the literature. The paper develops a general approach to time‐dependent contaminant migration through composite liners with intact or leaking geomembranes. Equations are derived for various combinations of system conditions including Dirichlet and Neumann boundary conditions in the waste, constant mass of contaminants in the waste, steady state or transient transport in the geomembrane, and steady state or transient seepage velocities in the mineral liner. The effect of the geomembrane on transport in the soil is converted into an equivalent boundary condition applicable at the top of the clay layer. Hence, only the media underlying the top geomembrane are explicitly represented in the numerical model, yielding a computationally efficient algorithm. The new formulation is validated in conjunction with finite‐layer, finite‐element and boundary‐element methods, by comparing its predictions to those of more conventional approaches which represent the geomembrane explicitly. The scope of the method is illustrated by modelling a landfill liner with a geomembrane leaking in five locations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
防渗工程中土工膜的褶皱现象普遍存在,然而目前关于土工膜界面剪切特性的研究大都忽略了褶皱的影响。以糙面土工膜(GM)和针刺钠基膨润土防水毯(GCL)组成的复合衬里为研究对象,利用水化变形试验证实两步水化法能有效地加速含褶皱GM+GCL复合衬里的水化步骤,使用大尺寸温控水浴直剪仪对含褶皱GM+GCL复合衬里的剪切特性进行了试验研究。通过将含褶皱GM+GCL复合衬里的剪切特性与无褶皱复合衬里进行对比分析,揭露了GM褶皱对复合衬里剪切特性的影响机制。GM褶皱的存在使得GM+GCL复合衬里的剪切应力-位移曲线产生较大差异,并使得低压下复合衬里的抗剪强度明显降低。GM褶皱使复合衬里产生明显的渐进破坏效应,复合衬里内部能出现多种破坏模式共存的现象。  相似文献   

11.
Geosynthetic clay liners (GCLs) have been widely used as a hydraulic barrier along with HDPE geomembrane (GM) in landfills. Both the internal and interface strengths of GCLs are very important for evaluating landfill stability. An improved simple shear apparatus used in this study does not force the shear failure to occur along a pre-determined plane. The composite specimens can fail along any interface or through shearing of the GCL internally. The displacement of each component of the specimen can also be measured during the tests. When non-woven geotextile side contacts textured GM (NWGT/GMX) and woven geotextile side contacts compacted clay layer (WGT/CCL) for a dry GCL, the failure interface can change from NWGT/GMX interface to WGT/CCL interface with the increases of the normal stresses. Conversely, when woven geotextile side contacts textured GM (WGT/GMX) and non-woven geotextile side contacts compacted clay layer (NWGT/CCL) for a dry GCL, the failure always occurs at the WGT/GMX interface for all applied normal stresses. The internal failure of the GCL did not occur when the normal stress increased up to 1,500 kPa for the GCL in dry condition.  相似文献   

12.
徐江伟  余闯  蔡晓庆  杨萌 《岩土力学》2015,36(Z1):109-114
土工膜和下伏压实黏土组成的复合衬层已被广泛用作填埋场的防渗屏障系统。有机污染物在复合衬层中迁移时,其主要运移机制是扩散作用。假设有机污染物在土工膜中稳态扩散,并假设在下伏衬层中扩散系数为迁移距离的线性函数,且考虑降解作用的影响,建立了有机污染物在复合衬层中的一维扩散模型,针对零浓度下边界条件,获得了模型解析解。基于该解析解,分析讨论了相关参数的敏感性。结果表明,相关参数对计算结果影响很大,降解半衰期对污染物运移同样存在较大影响。该解析模型仅适用于有机污染物在两层复合衬垫中的迁移问题,可为填埋场的初步设计提供参考  相似文献   

13.
Consolidation of clayey contaminant barriers such as landfill liners has been postulated as a cause of early breakthrough of contaminants. In this paper we theoretically investigate this proposition. For this purpose a sophisticated one‐dimensional, large‐deformation model of coupled mechanical consolidation and solute transport is employed. This new model is a generalization of existing coupled consolidation and solute transport models described in the literature. It takes into account both non‐linearities in geometry as well as constitutive relations. The latter relate the compressibility, hydraulic conductivity and coefficient of effective diffusivity to the deformation of the soil. The model is applied to a case study of a clay liner and geomembrane system. Results obtained from numerical solution of the model equations are compared with those from various simplified models, including a ‘diffusion only’ (i.e. a rigid soil) model traditionally used in contaminant barrier design. For barriers incorporating low compressibility soils (as for many well compacted clays), there is little difference between contaminant transit (i.e. breakthrough) times predicted by the two models. However, for contaminant barriers incorporating more compressible soils, consolidation is shown to significantly accelerate transport. These results indicate the potential importance of accounting for the effects of soil consolidation and highlight the limitations of existing models when modelling solute transport through composite barriers utilizing soft soils. Based on these limited results, we suggest a possible way of taking into account soil consolidation using simplified models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Composite landfill liner design with Ankara clay, Turkey   总被引:1,自引:0,他引:1  
This study presents an overview of the geotechnical properties of the clayey soils, referred to as Ankara clay, at two sites of the Ankara region in an attempt to design a landfill profile composed of a high density polyethylene (HDPE) geomembrane/clay composite liner through the Hydrologic Evaluation of Landfill Performance (HELP) model and the Water Balance Method. The geotechnical properties of the landfill layers along with the water balance factors (i.e., evapotranspiration, precipitation, temperature, etc.) were assessed to determine the height of the water-saturated zone in the refuse above the composite liner for landfill design. The cumulative expected leakage rates through the composite liner constructed with compacted Ankara clay were related quantitatively to the cumulative average leachate head. The results of this investigation show that the leakage rates through the composite liner are within tolerable limits.  相似文献   

15.
Performance-based design of landfill liners   总被引:6,自引:0,他引:6  
Factors affecting chemical transport in geomembrane, clay and composite liners are reviewed, and a simplified performance-based method for evaluating landfill bottom liners is presented. For single geomembrane liners, mass transport of inorganic chemicals is calculated from the leakage rate from holes for an assumed frequency of hole occurrence. Transport of organic chemicals is obtained by accounting for molecular diffusion through the intact geomembrane. Migration of inorganic and organic chemicals in compacted clay liners is calculated using a solution of the 1D advection–dispersion-reaction equation. For composite liners consisting of a geomembrane and a clay liner, 3D flow and transport of inorganic chemicals is approximated using an equivalent 1D model for transport through an effective area of transport. The approximation is based on results from 3D analyses that have been conducted for a variety of cases. Migration of organic chemicals through composite liners is calculated using a 1D diffusion model. Applicability of the method is illustrated by using it to evaluate the relative performance of several different liner systems.  相似文献   

16.
Diffusion and sorption experiments using a DKS permeameter   总被引:2,自引:0,他引:2  
The analysis of contaminant transport through clay liner is a relevant aspect in the design of industrial, urban and mining waste disposal systems, since these areas must be designed and operated to prevent contaminating substances from reaching underground water systems in unacceptable concentrations. The design requires an estimate of the potential contaminant transport rate. However, before any attempt at quantification can be made, values for transport mechanism control parameters must be established. Clayey materials are frequently used as contaminant barriers. In these materials, which have low hydraulic conductivity, the main contaminant transport mechanism is molecular diffusion. Parameters controlling transport for these conditions are the diffusion coefficient and sorption parameters. These parameters depend on soil constituents and characteristics as well as on the chemical constitution of the contaminant. The great complexity of the factors involved makes it necessary to determine the parameters of each type of soil. This paper discusses an equipment called DKS permeameter (diffusion, convection, sorption), for the study of soil-contaminant transport mechanisms, designed at the Institute for Soil Mechanics of the Ruhr-University Bochum, and some results obtained from its use at COPPE/Federal University of Rio de Janeiro (UFRJ), Brazil. This equipment determines the effective diffusion coefficient and sorption parameter with a better reflection of field conditions. The soil under study is a mix of sodium–bentonite that has low hydraulic conductivity (k=10−9 cm/s) with adequate liner characteristics. The result indicated the relevance of determining sorption parameters for structured soils, since the sorption perceived from batch test results using pulverised soil represents maximum soil capacity. Designs based on this parameter would overestimate the attenuation capacity of the liner.  相似文献   

17.
垃圾填埋场中渗滤液的作用可能对压实黏土衬垫及地基土的力学性质产生一定的影响,但目前研究成果存在矛盾之处。以CaCl2溶液和苯酚溶液作为渗滤液中无机和有机污染物的代表,对添加10%钠基膨润土的压实黏土进行力学性质的试验研究。结果表明,(1)两种模拟渗滤液的作用使土的压缩性增强,抗剪强度降低。(2)苯酚对压实黏土力学性质的影响更为显著,不排水强度约为自来水和0.05molL-1CaCl2溶液的55%。(3)土样初始孔隙比相同时,溶液作用下扩散双电层变薄造成孔隙变大,可能是产生这种现象的主要原因。(4)模拟渗滤液的作用对压实黏土衬垫及地基土具有不利的影响。  相似文献   

18.
Current risk-based methods for assessing the effects of landfill leachate migration on groundwater resources are conservative and generalised. Cost-effective and practical strategies are required which can robustly determine the potential for contaminant attenuation on a site-specific basis. In this paper laboratory column experiments and reactive transport modelling are evaluated as a combined approach for assessing the chem’ical impact of leachate migration in the Triassic Sandstone aquifer. The results are compared with field data for a landfill in the East Midlands. Columns of aquifer sandstone were flushed sequentially with groundwater, followed by acetogenic or methanogenic leachate to simulate chemical interactions occurring during leachate loading episodes. The key contaminants in leachate (NH4, heavy metals, organic fractions) were attenuated by ion exchange, redox reactions, sorption and degradation. These processes produce a consistent hydrochemical signature which may help identify the extent of leachate migration in the aquifer. The laboratory results largely replicate those found in the field system, and the behaviour of inorganic contaminants during leachate flushing of the aquifer columns can be described by the reactive transport model. The experimental and modelling approach presented represents a powerful tool for risk assessment and prediction of leachate contaminant fate at unlined and lined landfills.  相似文献   

19.
Containment landfills: the myth of sustainability   总被引:5,自引:0,他引:5  
A. Allen   《Engineering Geology》2001,60(1-4):3-19
A number of major problems associated with the containment approach to landfill management are highlighted. The fundamental flaw in the strategy is that dry entombment of waste inhibits its degradation, so prolonging the activity of the waste and delaying, possibly for several decades, its stabilisation to an inert state. This, coupled with uncertainties as to the long-term durability of synthetic lining systems, increases the potential, for liner failure at some stage in the future whilst the waste is still active, leading to groundwater pollution by landfill leachate. Clay liners also pose problems as the smectite components of bentonite liners are subject to chemical interaction with landfill leachate, leading to a reduction in their swelling capacity and increase in hydraulic conductivity. Thus, their ability to perform a containment role diminishes with time. More critically, if diffusion rather than advection is the dominant contaminant migration mechanism, then no liner will be completely impermeable to pollutants and the containment strategy becomes untenable.

There are other less obvious problems with the containment strategy. One is the tendency to place total reliance on artificial lining systems and pay little attention to local geological/hydrogeological conditions during selection of landfill sites. Based on the attitude that any site can be engineered for landfilling and that complete protection of groundwater can be effected by lining systems, negative geological characteristics of sites are being ignored. Furthermore, excessive costs in construction and operation of containment landfills necessitate that they are large scale operations (superdumps), with associated transfer facilities and transport costs, all of which add to overall waste management costs. Taken together with unpredictable post-closure maintenance and monitoring costs, possibly over several decades, the economics of the containment strategy becomes unsustainable. Such a high-cost, high-technology approach to landfill leachate management is generally beyond the financial and technological resources of the less wealthy nations, and places severe burdens on their economies. For instance, in third world countries with limited water resources, the need to preserve groundwater quality is paramount, so expensive containment strategies are adopted in the belief that they offer greatest protection to groundwater. A final indictment of the containment strategy is that in delaying degradation of waste, the present generations waste problems will be left for future generations to deal with.

More cost-effective landfill management strategies take advantage of the natural hydrogeological characteristics and attenuation properties of the subsurface. The ‘dilute and disperse’ strategy employs the natural sorption and ion exchange properties of clay minerals, and it has been shown that in appropriate situations it is effective in attenuating landfill leachate and preventing pollution of water resources. Operated at sites with thick clay overburden sequences, using a permeable cap to maximise rainfall infiltration and a leachate collection system to control leachate migration, ‘dilute and disperse’ is a viable leachate management strategy. Hydraulic traps are relatively common hydrogeological situations where groundwater flow is towards the landfill, so effectively suppressing outwards advective flow of leachate. This approach is also best employed with a clay liner, taking advantage of the attenuation properties of clays to combat diffusive flow of contaminants. These strategies are likely to guarantee greater protection of groundwater in the long term.  相似文献   


20.
鉴于西北地区干-湿与冻-融交替循环的气候特征、砾质土料储存量丰富以及土工织物膨润土垫(GCLs)防渗新技术在国内外已逐步得到推广应用,提出了宽级配砾质土料、土工织物粘土垫层(GCLs)和土工膜(GM)组合作为垃圾填埋场防渗系统的构想。通过对宽级配砾质土料的室内试验数据和国内外有关文献资料的分析研究表明,以GCLs/GM作为隔渗层,以宽级配砾质土代替粘土作为隔渗层的保护层所构成的复合防渗系统,能有效抵御干-湿与冻-融交替循环作用的影响,显著提高垃圾填埋场长期防渗能力和整体稳定性。对于处在西北地区特殊环境中的垃圾填埋场而言,文中所建议的复合防渗系统设置方法,可能是一种值得期待的垃圾填埋场防渗型式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号