首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
With the launch of the TIMED satellite in December 2001, continuous temperature and wind data sets amenable to MLT tidal analyses became available. The wind measuring instrument, the TIMED Doppler Interferometer (TIDI), is operating since early 2002. Its day- and nighttime capability allows to derive tidal winds over a range of MLT altitudes. This paper presents climatologies (June 2002–June 2005) of monthly mean amplitudes and phases for six nonmigrating semidiurnal tidal components between 85 and 105 km altitude and between 45°S and 45°N latitude (westward propagating wave numbers 4, 3, 1; the standing oscillation s0; and eastward propagating wave numbers 1, 2) in the zonal and meridional wind directions.Amplitude errors are 15–20% (accuracy) and 0.8 m/s (precision). The phase error is 2 h. The TIDI analysis agrees well with 1991–1994 UARS results at 95 km. During boreal winter, amplitudes of a single component can reach 10 m/s at latitudes equatorward of 45°. Aggregate effects of nonmigrating tides can easily reach or exceed the amplitude of the migrating tide. Comparisons with the global scale wave model (GSWM) and the thermosphere–ionosphere–mesosphere–electrodynamics general circulation model (TIME-GCM) are partly inconclusive but they suggest that wave–wave interaction and latent heat release in the tropical troposphere both play an important role in forcing the semidiurnal westward 1, westward 3, and standing components. Latent heat release is the leading source of the eastward propagating components.  相似文献   

2.
The present study reports long-term variabilities and trends in the middle atmospheric temperature (March 1998–2008) derived from Rayleigh backscattered signals received by the Nd:YAG lidar system at Gadanki (13.5°N, 79.2°E). The monthly mean temperature compositely averaged for the years 1998–2008 shows maximum temperature of 270 K in the months of March–April and September at altitudes between 45 and 55 km. The altitude profile of trend coefficients estimated from the 10 years of temperature observations using regression analysis shows that there exists cooling at the rate with 1σ uncertainty of 0.12±0.1 K/year in the lower stratospheric altitudes (35–42 km) and 0.2±0.08 K/year at altitudes near 55–60 km. The trend is nearly zero (no significant cooling or warming) at altitudes 40–55 km. The regression analysis reveals the significant ENSO response in the lower stratosphere (1 K/SOI) and also in mesosphere (0.6 K/SOI). The solar cycle response shows negative maxima of 1.5 K/100F10.7 units at altitudes 36 km, 41 km and 1 K/100F10.7 units at 57 km. The response is positive at mesospheric altitude near 67 km (1.3 K/100F10.7 units). The amplitudes and phases of semiannual, annual and quasi-biennial oscillations are estimated using least squares method. The semiannual oscillation shows larger amplitudes at altitudes near 35, 45, 62 and 74 km whereas the annual oscillation peaks at 70 km. The quasi-biennial oscillations show larger amplitudes below 35 km and above 70 km. The phase profiles of semiannual and annual oscillations show downward propagation.  相似文献   

3.
Measurements of electron temperature made by the thermal electron energy distribution (TED) instrument on board the EXOS-D (Akebono) satellite have been analysed. From the data taken between 1989 and 1995, averaged daytime and nighttime temperature profiles for different geophysical conditions have been produced. These profiles represent the averaged thermal electron temperature between 1000 and 8000 km altitude for conditions of high (F10.7>150) and low (F10.7<120) solar activity. Results indicate that increased solar activity has a marked effect on the electron temperature. At 8000 km altitude, the typical low-latitude daytime electron temperature is around 8000 K. The nighttime electron temperature at 8000 km is around 4000 K. The averaged daytime difference between high and low solar activity conditions is around 1000 K at altitudes above 2500 km. Between 1000 and 2000 km altitude this situation is reversed, and the electron temperature is comparatively higher during periods of low solar activity during both day and night. Composition changes in the region are proposed as a mechanism for this reversal. In addition, there is evidence of an asymmetry in thermal electron temperature between the northern and southern hemispheres. The averaged electron temperature is found to be comparatively higher in the northern hemisphere during the daytime and comparatively higher in the southern hemisphere during the nighttime. This difference between hemispheres is particularly evident during the nighttime, and during the rapid heating and cooling periods around sunrise and sunset. Possible reasons for the asymmetry are discussed. Profiles are also presented for conditions of high (Ap>30) and low (Ap<20) magnetic activity. Analysis has confirmed that geomagnetic activity has little effect on electron temperature below L=2.2.  相似文献   

4.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   

5.
The F2-layer peak density, NmF2, and peak altitude, hmF2, which were observed by 12 ionospheric sounders during the 20 September 1964 geomagnetically quiet time period at solar minimum are compared with those calculated by the three-dimensional time-dependent theoretical model of the Earth's low and middle latitude ionosphere and plasmasphere. The modeled NmF2 are also compared with those measured during the geomagnetically quiet time periods of 12–15, 18–21, and 26 September 1964 to take into account observed day-to-day ionospheric variability. Major features of the data are reproduced by the model if the corrected HWM90 neutral wind is used. The changes in NmF2 due to the zonal E×B plasma drift are found to be less than 20% in the daytime low latitude ionosphere. The model, which does not take into account the zonal E×B plasma drift, underestimates night-time NmF2 up to the maximum factor of 2 at low geomagnetic latitudes. The night-time increase of NmF2 caused by the zonal E×B plasma drift is less pronounced at −20° and 20° geomagnetic latitudes in comparison with that between −10° and 10° geomagnetic latitude. The longitude dependence of the calculated night-time low latitude influence of the zonal E×B plasma drift on NmF2 is explained in terms of the longitudinal asymmetry in B (the eccentric magnetic dipole is displaced from the Earth's center and the Earth's eccentric tilted magnetic dipole moment is inclined with respect to the Earth's rotational axis), and the variations of the wind induced plasma drift and the meridional E×B plasma drift in geomagnetic longitude. The difference between the hmF2 values calculated by including the effect of zonal E×B drift and that obtained when it is excluded does not exceed 19 km in the low latitude ionosphere. Over the geomagnetic equator the zonal E×B plasma drift produces the maximum increase in the electron density by a factor of 1.06–1.48 and 1.05–1.30 at 700 and 1000 km altitude, respectively, and this increase is not significant above about 1500 km. Changes in the vertical electron content, VEC, caused by the zonal E×B plasma do not exceed 16% during the day, while the value of the night-time VEC is increased up to a factor of 1.4 due to this drift. The maximum effects of the zonal E×B plasma drift on the night-time electron density derived from the model results corresponding to solar minimum and maximum are quite comparable.  相似文献   

6.
Measurements of the electron density at 600 km altitude (N600) were obtained with the Hinotori satellite launched by the Institute of Space and Astronautical Science of Japan. These measurements were used to check the validity of the International Reference Ionosphere (IRI) model in predicting the electron density at that altitude in the South American peak of the equatorial anomaly. The measurements correspond to the longitude zone from 285 to 369° and −15° geomagnetic latitude. To model the electron density at 600 km altitude, two cases were considered, namely (i) N600 was calculated with the IRI model at 10° intervals within the corresponding longitudinal zone and mean values were obtained, and (ii) N600 was calculated with the IRI using ionosonde data as input coefficients in the model. The data used for this study were measured almost simultaneously with the total electron content data used in a previous work. The results show good predictions at hours of minimum ionisation for the equinox and the December solstice. For the June solstice, the best agreement was obtained around noon. However, strong disagreements were observed in some cases such as the equinox at 15:00 LT, suggesting that there is a need to improve the modeled topside profile.  相似文献   

7.
Diurnal and seasonal variations of bottom side electron density profile shape parameters B0, B1, representing the bottom side F2-layer thickness and shape, are examined using modern digital ionosonde observations at a low-middle latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N) for high solar activity (HSA) (2001–2002). Median values of these parameters are obtained at each hour during different seasons and compared with the predictions of the latest version of the international reference ionosphere (IRI), IRI-2001 model using both the options namely: IRI (Gulyaeva) and IRI (B0 Tab.). Results show in general, a large variability in B0, and B1 parameters during all the seasons, the variability is larger during nighttime than by daytime. The diurnal variation of median B0, in general, show more or less similar trends with diurnal maximum occurring around noontime, except during summer, when it occurs between 09 and 10 LT. Variation pattern of B1 in general, is identical in all the seasons with lower values of B1 by daytime than by night. Comparative studies of B0 with those obtained with the IRI model show that in general, IRI (B0 Tab.) option reveals better agreement with the observations during all the seasons for local times from about 10 LT to about 16 LT, while outside this time period IRI (Gulyaeva) matches well with the observations. The predicted B1 parameter, using IRI (B0 Tab.) is close to observations in terms of diurnal variation, while B1 using IRI (Gulyaeva) option, assumes a fixed value of 3 at all local times irrespective of season.  相似文献   

8.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

9.
Annual and seasonal variations in the low-latitude topside ionosphere are investigated using observations made by the Hinotori satellite and the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The observed electron densities at 600 km altitude show a strong annual anomaly at all longitudes. The average electron densities of conjugate latitudes within the latitude range ±25° are higher at the December solstice than at the June solstice by about 100% during daytime and 30% during night-time. Model calculations show that the annual variations in the neutral gas densities play important roles. The model values obtained from calculations with inputs for the neutral densities obtained from MSIS86 reproduce the general behaviour of the observed annual anomaly. However, the differences in the modelled electron densities at the two solstices are only about 30% of that seen in the observed values. The model calculations suggest that while the differences between the solstice values of neutral wind, resulting from the coupling of the neutral gas and plasma, may also make a significant contribution to the daytime annual anomaly, the E × B drift velocity may slightly weaken the annual anomaly during daytime and strengthen the anomaly during the post-sunset period. It is suggested that energy sources, other than those arising from the 6% difference in the solar EUV fluxes at the two solstices due to the change in the Sun-Earth distance, may contribute to the annual anomaly. Observations show strong seasonal variations at the solstices, with the electron density at 600 km altitude being higher in the summer hemisphere than in the winter hemisphere, contrary to the behaviour in NmF2. Model calculations confirm that the seasonal behaviour results from effects caused by transequatorial component of the neutral wind in the direction summer hemisphere to winter hemisphere.  相似文献   

10.
The Global Coupled Ionosphere–Thermosphere-Electrodynamics Model developed at Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS), is introduced in this paper. This new model self-consistently calculates the time-dependent three-dimensional (3-D) structures of the main thermospheric and ionospheric parameters in the height range from 90 to 600 km, including neutral number density of major species O2, N2, and O and minor species N(2D), N(4S), NO, He and Ar; ion number densities of O+ ,O2+, N2+, NO+, N+ and electron; neutral, electron and ion temperature; and neutral wind vectors. The mid- and low-latitude electric fields can also be self-consistently calculated. GCITEM-IGGCAS is a full 3-D code with 5° latitude by 7.5° longitude cells in a spherical geographical coordinate system, which bases on an altitude grid. We show two simulations in this paper: a March Equinox one and a June Solstice one, and compare their simulation results to MSIS00 and IRI2000 empirical model. GCITEM-IGGCAS can reproduce the main features of the thermosphere and ionosphere in both cases.  相似文献   

11.
In this paper, we investigate the solar flare effects of the ionosphere at middle latitude with a one-dimensional ionosphere theoretical model. The measurements of solar irradiance from the SOHO/Solar EUV Monitor (SEM) and GOES satellites have been used to construct a simple time-dependent solar flare spectrum model, which serves as the irradiance spectrum during solar flares. The model calculations show that the ionospheric responses to solar flares are largely related to the solar zenith angle. During the daytime most of the relative increases in electron density occur at an altitude lower than 300 km, with a peak at about 115 km, whereas around sunrise and sunset the strongest ionospheric responses occur at much higher altitudes (e.g. 210 km for a summer flare). The ionospheric responses to flares in equinox and winter show an obvious asymmetry to local midday with a relative increase in total electron content (TEC) in the morning larger than that in the afternoon. The flare-induced TEC enhancement increases slowly around sunrise and reaches a peak at about 60 min after the flare onset.  相似文献   

12.
A sodium resonance lidar at 589 nm has been operated in São José dos Campos, Brazil (23°S, 46°W) since 1972 mainly for studies related to the origin, chemistry and dynamics of the mesospheric sodium layer. Beginning in 1993, the improved laser capability has also enabled the processing of the Rayleigh signal from which the temperatures from 35 to 65 km are retrieved on a nightly mean basis. We used these nightly profiles to determine the monthly temperature profiles from 1993 to 2006. The mean temperature characteristics for each year and for the whole period are obtained. Seasonal thermal amplitude is small (6 K peak to peak at 40 and 60 km). Compared with the MSISE-90 model, a large difference is noted, with temperature lower than the model below the stratopause and higher above. Also the seasonal variation has a large difference with better agreement occurring around local winter, but with temperatures higher by 8–10 K at the equinoxes. The semiannual component is dominant over the annual at all altitudes. Linear trends with decreasing temperature of 1.09, 2.29 and 1.42 K/decade are observed at 40, 50 and 60 km, respectively.  相似文献   

13.
The new LIMA/ice model is used to study interhemispheric temperature differences at the summer upper mesosphere and their impact on the morphology of ice particle related phenomena such as noctilucent clouds (NLC), polar mesosphere clouds (PMC), and polar mesosphere summer echoes (PMSE). LIMA/ice nicely reproduces the mean characteristics of observed ice layers, for example their variation with season, altitude, and latitude. The southern hemisphere (SH) is slightly warmer compared to the NH but the difference is less than 3 K at NLC/PMC/PMSE altitudes and poleward of 70N/S. This is consistent with in situ temperature measurements by falling spheres performed at 69N and 68S. Earth's eccentricity leads to a SH mesosphere being warmer compared to the NH by up to approximately 85 km and fairly independent of latitude. In general, NH/SH temperature differences in LIMA increase with decreasing latitude and reach at 50. The latitudinal variation of NH/SH temperature differences is presumably caused by dynamical forcing and explains why PMSE are basically absent at midlatitudes in the SH whereas they are still rather common at similar colatitudes in the NH. The occurrence frequency and brightness of NLC and PMC are larger in the NH but the differences decrease with increasing latitude. Summer conditions in the SH terminate earlier compared to NH, leading to an earlier weakening and end of the ice layer season. The NLC altitude in the SH is slightly higher by 0.6–1 km, whereas the NLC altitudes itself depend on season in both hemispheres. Compared to other models LIMA/ice shows smaller interhemispheric temperature differences but still generates the observed NH/SH differences in ice layer characteristics. This emphasizes the importance of temperature controlling the existence and morphology of ice particles. Interhemispheric differences in NLC/PMC/PMSE characteristics deduced from LIMA/ice basically agree with observations from lidars, satellites, and radars.  相似文献   

14.
临近空间大气扰动变化特性的定量研究   总被引:9,自引:0,他引:9       下载免费PDF全文
本文利用TIMED/SABER 2002年1月至2013年1月共11年的卫星温度探测数据,通过全球网格化及在网格内作数学统计的方法,得到了20~100km高度上全球网格点上温度的平均值和标准差,实现了对临近空间全球大气扰动进行定量刻画的目的.通过定量分析温度标准差的分布特性,文中得到了临近空间大气扰动的全球分布规律,并讨论了与这些分布规律相关的物理过程.结果表明,在20~70km高度上,温度标准差为1~10K,有显著的冬季/夏季的差异,冬季的温度标准差比夏季大;大气重力波扰动是最主要来源,同时大气传播性行星波引起的扰动也是来源之一.在70~100km高度上,温度标准差常年较强,量值为10~30K,冬季/夏季的差异小,低纬地区的温度标准差高于中高纬度地区,呈现许多局地化的小结构.大气重力波是引起该区域大气总扰动量的主要扰动来源,大气潮汐波、传播性行星波(准2天、准6.5天)也有重要贡献.  相似文献   

15.
Observations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low-latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitudinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermosphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the effects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is different for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10°. At night, the correlation is positive.  相似文献   

16.
Lidar measurements of upper atmospheric sodium were made at Alcântara (2°20′ S, 44°30′ W), Brazil, on 8 days during the month of November 1996. These are the first sodium measurements to be reported from an almost equatorial location. The average sodium distribution at Alcântara was found to be very similar to the annual mean for São José dos Campos (23° S), but about 1 km higher than the November mean value of 92 km for the latter site. Only one, weak, sporadic sodium layer was observed during more than 26 h of observations, an occurrence frequency much less than that seen at low latitude sites in the northern hemisphere. A survey of the observations of sporadic layers at various locations suggests that both magnetic dip and declination angles might influence their rate of occurrence.  相似文献   

17.
The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450°C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150°C and the flow consisted of a mixture of 3.25 × 1011 kg of pyroclasts and 5.0 × 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 × 1011 kg of pyroclasts and 1.0 × 1011 kg of air.  相似文献   

18.
The extended Canadian Middle Atmosphere Model (extended CMAM) is a general circulation model, which extends from the surface to about 210 km. Spatial complex spectral analysis is applied to horizontal winds simulated by the extended CMAM to obtain semidiurnal tidal amplitudes and phases (from e5 to w5) in the mesosphere and lower thermosphere (MLT) region. The dominant w2 migrating component and the presence of eight nonmigrating tides (w3, w4, w5, e1, e2, e3, e4 and e5) in the mid-latitudes are identified. Components w1 and s0, which tend to maximize at high latitudes, will be discussed separately in a later paper. The migrating semidiurnal tide (w2) has amplitudes reaching over 20 m s−1 for both zonal and meridional winds in the mid-latitude region. Its form compares well to the published results. The amplitudes of nonmigrating semidiurnal tides are non-negligible compared with the migrating semidiurnal tides. The amplitudes for w3 and e2 exceed 12 and 8 m s−1, respectively.Comparisons are made with four nonmigrating semidiurnal components (w3, w4, e1 and e2) derived from the TIMED Doppler interferometer (TIDI) wind measurements between 85 and 105 km altitude and between 45°S and 45°N latitude. Overall, the basic CMAM and TIDI latitudinal structures of the amplitudes agree well and the agreement between the annual mean amplitudes varies with component. Relative to the TIDI results, the CMAM seasonal variations of w4 are in good agreement, of e2 are in reasonable agreement, of w3 are in partial agreement and of e1 are in poor agreement.The 11 semidiurnal components from the model are superimposed to generate the total semidiurnal winds at Jakarta (6°S, 106°E) and Kototabang (0°, 100°E) and are compared with measurements from two equatorial meteor radar stations at these sites. The relative contributions of components to the reconstructed amplitude vary from month to month. The CMAM reconstructions are generally larger than the radar results by a factor varying between one and two. The phases in the radar data are typically stationary with respect to height, whereas they generally decrease with height in the CMAM reconstruction.  相似文献   

19.
A database of the electron temperature (Te) comprising of most of the available LEO satellite measurements is used for studying the solar activity variations of Te. The Te data are grouped for two levels of solar activity (low LSA and high HSA), five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the Te values we obtain variation of Te along magnetic field lines and heat flux for LSA and HSA. We have found that Te increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the Te response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between Te and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime.  相似文献   

20.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号