首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
李承涛  苏小宁  孟国杰 《地震》2018,38(2):37-50
巴颜喀拉块体东北缘是构造变形和地震活动较强的区域, 2017年九寨沟MS7.0地震就发生在该区域内。 利用多尺度球面小波方法解算GPS应变率场, 分析巴颜喀拉块体东北缘2009年至2017年的应变率场分布特征, 该方法的优点是可以将GPS应变率场按照不同的空间尺度进行小波分解, 给出不同空间尺度的应变率场。 结果表明在2017年九寨沟地震之前, 震中附近应变积累显著, 虎牙断裂北延断裂的左旋走滑速率为3.0 mm/a, 拉张速率为3.1 mm/a, 表明该条断裂以左旋走滑为主兼有拉张特征, 与九寨沟地震的震源机制解一致。 除九寨沟震中附近外, 在岷县与漳县交界处、 理县和汶川、 青川等地区主应变率、 面应变率、 最大剪应变率也较大, 这可能与2013岷县漳县(MS6.6)、 2008年汶川(MS8.0)、 2014年理县(MS4.8)以及2014青川县(MS4.8)地震有关。  相似文献   

2.
通过对威远MS 5.4地震背景与活动特征研究,表明自贡地震监测中心加强流动监测提高了威远MS 5.4地震序列地震参数的精度和地震信息报送的准确性。威远MS 5.4地震前经历了区域地震平静至活跃、再发震的过程,威远MS 5.4地震为一般主—余型地震,其ρb值异常可能反映了其后将发生资中MS 5.2地震。威远MS 5.4地震序列及其附近的华蓥山断裂地震带和马边地震带震后时间扫描地震学参数均正常,威远MS 5.4地震区近期再次发生更大地震的可能性较小;并认为威远MS 5.4发震断裂为荣县—威远基底断裂,华蓥山断裂带及其附近荣县—威远—资中地区2018年开始的4—6级地震活跃与川西地区东昆仑断裂带2017年8月8日九寨沟MS 7.0地震的发生存在呼应关系。  相似文献   

3.
以中国地壳运动观测网络2009—2013年GPS观测数据为边界条件,使用非连续接触有限元技术构建九寨沟地区二维有限元模型,在不确定性分析的基础之上,计算区内主要断裂带现今运动速率。研究结果表明:在巴颜喀拉块体整体近于NE向的推挤过程中,九寨沟地区的塔藏断裂、虎牙断裂、树正断裂均呈现为较高的左旋走滑兼具挤压的现今运动特征;岷江断裂、龙日坝断裂和龙门山断裂则呈现为右旋走滑兼有挤压的运动特性。结合区域主应变率计算结果,发现九寨沟地区仍然具有较高的应变积累背景。树正断裂作为2017年8月8日九寨沟M7.0地震的发震断层,其现今左旋滑动速率为3.0 mm/a,与东昆仑断裂带玛沁—玛曲段附近的左旋走滑速率4.1mm/a基本匹配,说明该断裂可能是东昆仑断裂带东端分支断裂之一,而东昆仑断裂与虎牙断裂之间的历史地震空区可能已被九寨沟地震事件贯通。  相似文献   

4.
青藏高原中北部的巴颜喀喇地块是近年来强震最为活跃的地区,自1997年以来在地块周围发生了一系列7级以上地震.2014年于田MS7.3级地震就发生在该地块西边界附近的硝尔库勒盆地南缘,该区是阿尔金断裂、康西瓦断裂和东昆仑断裂等多组不同走向大型走滑活动断裂带的交汇部位,不同断裂走向的突然转变及滑动速率差异使该地区形成局部的拉张应力状态,发育了多条NE和近SN向的左旋正断裂. 通过余震分布、震源机制解结果等资料分析,认为此次地震的发震构造为阿尔金断裂西南端的一条次级断裂——硝尔库勒断裂,地震破裂特征为左旋走滑兼正断性质. 在巴颜喀喇地块这一轮的强震活动中,其北边界和东边界都显示块体向东挤出约7 m的位移量,但块体西边界产生的伸展量明显与整个块体向东的位移量不协调,2014年于田MS7.3级地震是巴颜喀喇地块向东挤出的构造响应和应变调整.模拟结果显示阿尔金主断裂上的库仑应力有所增加,东昆仑—柴达木地块可能为下一个强震活跃区,特别是阿尔金断裂的中西段,是今后应该重点关注和监视的地区.  相似文献   

5.
九寨沟地震(M_s7.0或M_w6.5)震中位于青藏高原巴颜喀拉块体东缘东昆仑断裂带东端塔藏断裂、岷江断裂和虎牙断裂交汇部位,中国地震局相关科研机构的研究人员曾将该震中区判定为玛沁—玛曲高震级地震危险区.地震应急科学考察期间没有发现地震地表破裂带,但地震烈度等震线长轴方位、极震区基岩崩塌和滑坡集中带、重新定位余震空间展布和震源机制解等显示出发震断层为NNW向虎牙断裂北段,左旋走滑性质,属东昆仑断裂带东端分支断层之一.此外,汶川地震后,在青藏高原东缘和东南缘次级活动断层上发生了包括2017年九寨沟地震(Mw6.5)、2014年鲁甸(M_w6.2)、景谷(M_w6.2)、康定(M_w6.0)等多次中强地震,显示出青藏高原东缘至东南缘各块体主干边界活动断层现今处于中等偏高的应变积累状态,即在巴颜喀拉、川滇等块体主干边界活动断层上具备了发生高震级(M_w≥7.0)地震的构造应力-应变条件,未来发生高震级地震的危险性不容忽视.  相似文献   

6.
青藏高原东缘地震活动与居里点深度之间的相关性   总被引:2,自引:1,他引:1       下载免费PDF全文
本文选取不同的地壳速度分区模型,应用双差定位法对2008—2017年发生在青藏高原东缘的地震进行了重新定位,共得到4921个精确定位结果.重定位后的地震更加集中分布于龙门山断裂带、鲜水河断裂以及四川盆地南缘,震源深度多为5~20 km.根据NGDC-720地磁场模型计算了青藏高原东缘的三分量磁异常及其梯度张量,重定位后的大多数地震位于负磁异常区域以及四川盆地西南缘的强-弱磁异常边界.基于三维分形磁化模型获得了青藏高原东缘的居里点深度,并计算了磁性层的平均地温梯度,进而利用一维稳态热传导方程获得了其地壳温度结构.结果显示青藏高原东缘大多数地震均发生在居里点深度较大、地温梯度较低的区域.大多数M≥2.0地震震源区温度为100~500℃,M≥4.0地震震源区温度多为200~400℃.2008年汶川MS8.0、2013岷县MS6.6、2014年鲁甸MS6.5以及2017九寨沟MS7.0地震震源区温度均为300℃左右,而2013年芦山MS7.0地震震源区温度接近约400℃,更多地受控于龙门山断裂带与鲜水河断裂交汇处的局部构造应力场异常.  相似文献   

7.
为了解东昆仑断裂活动对2017年8月8日九寨沟M_S7.0地震的影响,本文选取1999—2007年、2013—2017年GPS速度场作为约束,基于块体-位错模型反演计算东昆仑断裂两个时间段的块体运动速率、断裂滑动速率和滑动亏损率,并进一步研究青藏高原东缘最大剪应变率场和九寨沟震区的震间库仑应力累积速率.结果显示,东昆仑断裂中西段左旋走滑速率较高,东段走滑速率较低,自西向东逐步递减,存在明显的梯度.在两个时间段,阿坝块体刚性运动的方向顺时针偏转0.2°,运动速率由12.22mm·a-1增大到15.96mm·a-1;东昆仑断裂左旋走滑速率升高,其中西段较为明显(升高约1.2±0.3mm·a-1);东昆仑断裂东段闭锁深度和闭锁程度增加;2013—2017年,东昆仑断裂滑动引起的九寨沟震区库仑应力累积速率是1999—2007年的3倍,最大剪应变率也明显升高.因此本文认为:2008年汶川地震和2013年芦山地震后,龙门山断裂部分解锁,阿坝地块活动性增强,东昆仑断裂滑动速率增大,导致九寨沟震区库仑应力加载速率增加,加速了九寨沟地震的孕育过程.  相似文献   

8.
收集、整理四川省地震台网2013年5月至2017年9月产出的震相观测报告数据,采用单台多震和达法,重点分析2017年8月8日九寨沟MS 7.0强震前龙门山断裂带中北段地区波速比变化特征。结果表明:龙门山断裂带中段西侧的茂县地震台,在发震前2年左右,波速比出现一次持续时间约一年半的下降异常;发震前半年左右,波速比出现明显回返特征,波速比回返至均值上下时即发生九寨沟MS 7.0地震;震源区周边其他6个地震台波速比在发震前变化较平稳。茂县地震台波速比低值异常对判定九寨沟MS 7.0强震前龙门山断裂带中北段可能存在孕震体具有重要参考价值。  相似文献   

9.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

10.
2019年6月17日,在青藏高原东缘四川盆地南缘宜宾市长宁县发生MS6.0地震,其后5天内相继发生了珙县MS5.1、长宁MS5.3和珙县MS5.4强余震;7月4日,在珙县珙泉镇再次发生MS5.6地震.因灾害叠加,本次地震序列导致13人死亡,200多人受伤,大量房屋受损,造成了重大的人员伤亡和财产损失.本文基于四川区域地震台网提供的地震资料,采用多阶段定位方法,对长宁MS6.0地震序列早期(2019年6月17日至22日)余震进行了重新定位,同时,利用CAP波形反演方法,获得了序列中截止至7月4日的16次MS≥3.6地震的震源机制解与震源矩心深度,对该序列的发震构造进行了初步分析.长宁MS6.0地震序列重新定位后的610次ML≥1.5地震分布显示余震区呈NW-SE向展布,长约25 km,宽5 km;序列震源深度在0~10 km区间,深度均值约3.2 km,但空间上呈西深东浅的分布特征.长宁MS6.0地震位于余震区的东南端,具单侧破裂特征.CAP波形反演结果显示长宁MS6.0地震序列以逆冲和逆冲兼走滑型地震为主;16次MS≥3.6地震的震源矩心深度在1~7 km范围,平均深度3.5 km,与定位结果一致,揭示本次长宁地震序列发生在上地壳浅部.根据序列空间分布、震源机制解及震区构造特征,推测本次长宁MS6.0地震序列的发生可能与长宁—双河复式大背斜中白象岩—狮子滩背斜和双河场褶皱及其伴生断层活动有关,位于余震区西北段的6月17日珙县MS5.1、22日珙县MS5.4及7月4日珙县MS5.6地震应为6月17日长宁MS6.0地震触发白象岩—狮子滩背斜伴生断层活动所致.序列发震构造整体呈NE-SW向挤压为主、兼具一定NW-SE向拉张分量的构造变形特征,与南侧2018年12月16日兴文MS5.7和2019年1月3日珙县MS5.3地震所呈现的NW-SE向挤压、NE-SW向拉张构造变形特征具有显著差异,揭示四川盆地南缘地带处于构造变形模式的转换区域,所处构造环境的变化导致本次长宁地震序列震源区及附近区域发震构造变形特征具有复杂性.  相似文献   

11.
首先对2017年九寨沟MS7.0地震周边断裂活动和历史地震特征进行了阐述;然后利用黏弹性地壳模型,计算了1933年叠溪地震、1976年松潘震群和2008年汶川地震对2017年九寨沟地震的同震和震后库仑应力作用.该结果显示1933年叠溪地震对九寨沟地震具有延缓作用,而1976年松潘震群和2008年汶川地震对九寨沟地震的黏弹性库仑应力作用为正;随着下地壳和上地幔黏弹性物质的持续作用,前述几次地震总的黏弹性库仑应力在九寨沟地震破裂中心点处负的库仑应力逐渐减弱,而在破裂北段这些库仑应力逐渐转为正值,并促进了九寨沟地震的发生.本文也计算了九寨沟地震后对周边断层的库仑影响,并将此影响值转换为对断层能量积累的影响时间上,结果显示塔藏断裂带西段和中段在内的多条断裂带受到黏弹性库仑应力影响时间值超过10年.将库仑应力影响时间值加入到部分已知离逝时间的断层段上,也得到了这些断层段的未来30年特征地震发生概率.最终结果认为玛沁断裂带、玛曲断裂带、哈南—稻畦子断裂中段和西段等断层段的强震危险性需要重点关注.  相似文献   

12.
2017年8月8日四川省九寨沟县发生M_s7.0地震.本文基于Sentinel-1 SAR影像,利用InSAR技术获取了此次地震的同震形变场,反演获得同震滑动分布,计算了同震位错对余震分布和周边断层的静态库仑应力变化,并对发震构造进行了分析讨论.结果表明:①InSAR同震形变场显示,九寨沟地震造成地表形变最大量级约为20 cm(雷达视线方向),同震形变存在非对称性分布特征.②同震位错以左旋走滑为主,主要发生在4~16 km深度,最大滑动量约为77 cm,位于9 km深处.反演得到的矩震级为Mw6.46.同震错动未破裂到地表.③大部分余震发生在库仑应力增加区.此次地震增加了震中周边地区一些断裂的库仑应力,如东昆仑断裂带东段、龙日坝断裂、虎牙断裂等.④东昆仑断裂东段的未来地震危险性值得关注.⑤九寨沟地震的发震断层为树正断裂,可能是虎牙断裂的北西延伸隐伏部分,此次地震是巴颜喀拉块体南东向运动受到华南块体的强烈阻挡过程中发生的一次典型构造事件.  相似文献   

13.
利用南北地震带2014-2017年期间的流动重力观测资料,系统分析了区域重力场变化及其与2017年8月8日四川九寨沟7.0级地震发生的关系.结果表明:①区域重力场异常变化与北西西向塔藏断裂和南北向岷江断裂带在空间上关系密切,反映了沿控震断裂在2013-2017年期间发生了引起地表重力变化效应的地壳变形和构造活动.②九寨沟地震前,测区内出现了大空间范围的区域性重力异常,而震源区附近产生了局部重力异常,沿塔藏断裂带形成了重力变化高梯度带,其中,甘肃玛曲、迭部、青海河南蒙古族自治县、四川若尔盖、九寨沟一带重力差异变化达100×10-8m·s-2以上;这些可能反映九寨沟地震前,区域及震源区附近均产生与该地震孕育、发生有关的构造运动或应力增强作用.③九寨沟地震震中位于重力差异运动剧烈的鞍部等值线附近,与断裂走向基本一致的重力变化高梯度带零值线上,这一观测事实进一步佐证了重力场动态变化图像对强震地点预测具有重要的指示意义.  相似文献   

14.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

15.
基于InSAR技术,利用欧空局升降轨Sentinel-1A/IW宽幅数据,获取了2017年8月8日四川九寨沟7.0级地震InSAR同震形变场,并以升降轨InSAR观测结果为约束,反演了断层滑动分布,基于三种不同接收断层计算了同震库仑应力变化.结果表明,同震形变场发生在塔藏断裂、岷江断裂和虎牙断裂交汇的三角地带,升降轨干涉位移均显示本次地震的形变场影响范围约为50 km×50 km,形变场长轴方向为NW向,升降轨观测的形变量相反,反映断层运动性质以走滑运动为主,升降轨数据观测得到的最大LOS (Line of Sight,视线向)形变量分别为~22 cm和~14 cm.非对称形变场反映出断层两侧的运动差异.反演结果显示,最大滑动量约为1 m,平均滑动角为-9°,矩震级为MW6.5,地震破裂主要集中在地下1~15 km深度范围内,但整体而言本次地震破裂较为充分,基本将该区域1973年及1976年4次 > MW6.0地震的破裂空区完全破裂.考虑到塔藏断裂和虎牙断裂的运动性质,可初步判定发震断层为虎牙断裂北侧延伸分支.基于三种不同接收断层模型的同震库仑应力变化计算结果反映出该区域以应力释放为主,进一步触发较大走滑型余震的可能性不大.  相似文献   

16.
2017年8月8日的九寨沟MS7.0地震发生在岷江断裂、塔藏断裂及虎牙断裂交汇地区,地处青藏高原东北部的川甘交界地区,位于巴颜喀拉地块的东缘,地质构造复杂,对于九寨沟地震震中位置和发震断层的确定,存在不同意见.本文利用GNSS及升降轨InSAR观测,在获取九寨沟地震同震形变场的基础上,基于均匀弹性半无限位错模型,联合反演了发震断层的滑动分布模型,并计算了同震库仑应力变化.InSAR同震形变场显示,视线向最大沉降量和抬升量分别为0.21 m和0.16 m,形变场长轴为NW向,形变主要集中在断层西侧.距震中40 km和65 km的九寨和松潘两县,水平向的GNSS同震位移分别达14.31 mm和8.22 mm.联合GNSS和InSAR同震形变场反演得到的滑动分布主要集中在沿走向5~33 km,倾向2~20 km的范围内,平均滑动量为0.18 m,最大滑动量为0.91 m.发震断层长40 km,宽30 km,走向155°,倾角81°,滑动角-9.56°.同震位移场及滑移分布模型表明此次地震为一次左旋走滑为主的地震事件,地震破裂并未完全到达地表,与虎牙断裂北段的几何产状和运动学性质更为接近,结合精定位余震的分布,我们确定虎牙断裂北段为此次地震的发震断层,震中位于北纬33.25°,东经103.82°,震源深度10.86 km,矩震量为7.754×1018 Nm,相应的矩震级为MW6.5,与美国地调局和哈佛大学给出的震源机制解基本一致.同震库仑应力导致了虎牙断裂北段延长线的东北和西南两端应力增强,其中塔藏断裂的罗叉段和马磨段未来强震的危险性值得关注.  相似文献   

17.
2017年8月8日四川九寨沟发生了MS7.0地震,距离汶川地震震中约为140km.地震的发生会调整区域应力分布和影响区域地震活动性变化.那么,汶川地震的发生对此次九寨沟地震有何影响?区域应力如何演化?为回答这些问题,本研究基于高性能并行有限元方法和网格自适应加密技术,采用含地形起伏的黏弹非均匀椭球型地球模型,分别计算了汶川地震引起的同震-震后应力时空动态演化及其对此次九寨沟地震的影响.同时,考虑同震静态应力和震后黏弹性应力调整,计算了汶川、芦山和九寨沟地震的发生对周边断层应力积累的影响.计算结果显示汶川地震对九寨沟发震断层的同震库仑应力加载约为0.008 MPa,震后9年的黏弹性应力加载约为0.012~0.016 MPa,可能会使九寨沟地震提前发生.此外,汶川、芦山和九寨沟地震的发生引起龙门山断裂映秀以南段、东昆仑断裂、龙日坝断裂东段和岷江断裂北段及鲜水河断裂康定段应力加载大于0.01 MPa,增加了这些断裂带发生地震的危险性.  相似文献   

18.
岷山断块位于中国南北强震构造带的中段, 区域地质构造复杂, 活动断裂众多, 强震频发。 4条不同走向的活动断裂NE向龙门山构造带的茂汶断裂、 NWW向东昆仑断裂带的塔藏断裂、 近NS向的岷江断裂和NNW—NS向的虎牙断裂构成岷山断块的南北西东边界。 638—2017年该区域共发生了10次6级以上破坏性地震, 2017年九寨沟7.0级地震就是其中之一。 结合区域构造背景, 对岷山断块所发生的6级以上地震的发震构造特征、 地震活动特性进行归纳总结, 综合分析该区域地震地质特征及地震危险性, 得出以下认识: ① 地震分布空间分区特征显著, 破坏性强震发震构造多为活动性较强的岷山断块东西边界断裂, 震中位置多位于两组或多组活动断裂构造的交会或穿切部位; ② 地震分布时间特征表现为随着时间发展具有迁移回返和原地复发性等特点; ③ 岷山断块东西边界断裂破坏性地震的发生具有一定的时间关联性, 东边界虎牙断裂1973—2017年的地震序列为西边界岷江断裂1933—1960年地震序列约40年后的地震构造响应; ④ 未来岷山断块仍应是继续关注的强震潜在危险区, 岷江断裂中北段的强震潜在危险区是近期值得深入研究的地区之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号