首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
在数值模拟中,隐式有限差分具有较高的精度和稳定性.然而,传统隐式有限差分算法大多由于需要求解大型矩阵方程而存在计算效率偏低的局限性.本文针对一阶速度-应力弹性波方程,构建了一种优化隐式交错网格有限差分格式,然后将改进格式由时间-空间域转换为时间-波数域,利用二范数原理建立目标函数,再利用模拟退火法求取优化系数.通过对均匀模型以及复杂介质模型进行一阶速度-应力弹性波方程数值模拟所得单炮记录、波场快照分析表明:这种优化隐式交错网格差分算法与传统的几种显式和隐式交错网格有限差分算法相比不但降低了计算量,而且能有效的压制网格频散,使弹性波数值模拟的精度得到有效的提高.  相似文献   

2.
利用传统有限差分方法对基于Biot理论的双相介质波动方程进行数值求解时,由于慢纵波的存在,数值频散效应较为明显,影响模拟精度.相对于声学近似方程及普通弹性波方程,Biot双相介质波动方程在同等数值求解算法和精度要求条件下,其地震波场正演模拟需要更多的计算时间.本文针对Biot一阶速度-应力方程组发展了一种变阶数优化有限差分数值模拟方法,旨在同时提高其正演模拟的精度和效率.首先结合交错网格差分格式推导Biot方程的数值频散关系式.然后基于Remez迭代算法求取一阶空间偏导数的优化差分系数,并用于Biot方程的交错网格有限差分数值模拟.在此基础上把三类波的平均频散误差参数限制在给定的频散误差阈值和频率范围内,此时优化有限差分算子的长度就能自适应非均匀双相介质模型中的不同速度区间.数值频散曲线分析表明:基于Remez迭代算法的优化有限差分方法相较传统泰勒级数展开方法在大波数范围对频散误差的压制效果更明显;可变阶数的优化有限差分方法能取得与固定阶数优化有限差分方法相近的模拟精度.在均匀介质和河道模型的数值模拟实验中将本文变阶数优化有限差分算法与传统泰勒展开算法、最小二乘优化算法进行比较,进一步证明其在复杂地下介质中的有效性和适用性.  相似文献   

3.
横向各向同性介质紧致交错网格有限差分波场模拟(英文)   总被引:4,自引:2,他引:2  
针对有限差分数值模拟的频散问题,本文将交错网格技术和紧致差分格式相结合,推导了横向各向同性介质一阶速度一应力波动方程的紧致交错网格差分格式;对比分析了紧致交错网格差分格式、交错网格差分格式以及紧致差分格式的截断误差主项,并利用Fourier误差分析方法分析了上述三种差分格式的近似精度;在此基础上,分别采用上述三种差分格式进行了波场数值模拟。结果表明,当差分方程阶数相同时,紧致交错网格差分格式截断误差最小,数值频散最弱,差分精度最高,证实了该方法的有效性。  相似文献   

4.
声波方程数值模拟已广泛应用于理论地震计算,同时构成了地震逆时偏移成像技术的基础.对于有限差分法而言,在满足一定的稳定性条件时,普遍存在着因网格化而形成的数值频散效应.如何有效地缓解或压制数值频散是有限差分方法研究的关键所在.为精确求解空间偏导数,相继发展了高阶差分格式优化方法和伪谱方法.近期,为更好地缓解数值频散,提出了时间-空间域有限差分方法,该方法采用了泰勒展开近似方法来确定有限差分格式系数,因而只能保证在一定的小范围内很好的拟合波场传播规律.为进一步压制数值频散效应,本文引入了时间-空间域特定波数点满足频散关系的方法,根据震源、波速和网格间距确定波数范围,同时考虑了多个传播角度,然后建立方程确定了相应的有限差分格式系数,使得差分系数能在更大范围符合波场传播规律.通过频散分析和正演模拟,验证了本文方法的有效性.  相似文献   

5.
有限差分方法因其操作简单、计算消耗低而成为地震勘探领域中最为常用的数值模拟方法之一,然而用离散的显式差分算子数值逼近地震波动方程中的连续导数容易导致数值频散,并且基于正方形网格离散形式的有限差分方法对不同地质模型的适应性较低.针对一阶变密度声波方程的数值模拟,本文发展了一种适用于矩形网格离散形式的时间高阶空间隐式有限差分格式,可以有效压制时间和空间频散,同时灵活的网格剖分增强了其应用的广泛性.基于本文矩形交错网格时间高阶空间隐式有限差分格式的时空域频散关系和变量替换的思想,首先采用泰勒级数展开方法求解不同方向的非轴上时间差分系数及轴上空间差分系数,使本文差分格式可以获得任意偶数阶时间和空间精度.为了进一步提高本文差分格式在更大波数区域的空间模拟精度,我们采用线性优化方法来求取新的轴上空间差分系数用于一阶变密度声波方程的波场迭代求解中.频散、稳定性分析及数值模拟算例表明:相比于传统十字形空间域隐式有限差分格式,本文矩形交错网格时间高阶空间隐式有限差分格式在精度、稳定性和效率方面均具有优势.  相似文献   

6.
交错网格有限差分方法已经被广泛应用到数值模拟和地震波传播的研究中.传统交错网格有限差分方法中,一阶空间导数的高阶差分系数是通过Taylor级数展开求取的,这种表示空间导数的方法会导致数值频散的产生.本文针对时间二阶空间十阶交错网格有限差分算法,采用最小二乘法通过改变积分区间求取一系列一阶空间导数的差分系数,分析该差分系数和传统方法求取的差分系数的频散关系.选取效果最佳的最小二乘法进行数值模拟,并与传统方法相比较.数值频散分析和弹性波场模拟分析表明:介质弹性参数和离散参数相同的情况下,采用最佳积分区间的最小二乘法更能有效地压制数值频散,比Taylor级数展开法具有更高的数值模拟精度.  相似文献   

7.
声波方程数值模拟已广泛应用于理论地震计算,同时构成了地震逆时偏移成像技术的基础.对于有限差分法而言,在满足一定的稳定性条件时,普遍存在着因网格化而形成的数值频散效应.如何有效地缓解或压制数值频散是有限差分方法研究的关键所在.有限差分格式分为显式有限差分和隐式有限差分.隐式有限差分能够进一步压制数值频散效应.因此本文提出了给定频率范围满足时间-空间域隐式有限差分频散关系的方法,并根据震源频率、波速和网格间距确定波数范围,在此基础上建立方程确定了相应的隐式有限差分系数,使得差分系数能在更大频率范围符合波场传播规律.通过频散分析和正演模拟,验证了本文方法的有效性.  相似文献   

8.
波场模拟中的数值频散分析与校正策略   总被引:22,自引:5,他引:17       下载免费PDF全文
波动方程有限差分法正演模拟,对认识地震波传播规律、进行地震属性研究、地震资料地质解释、储层评价等,均具有重要的理论和实际意义.但有限差分法本身固有存在着数值频散问题,数值频散在正演模拟中是一种严重的干扰,会降低波场模拟的精度与分辨率.针对TI介质波场模拟的交错网格有限差分方法,本文从空间网格离散、时间网格离散和算子近似等三个方面对其产生的数值频散进行了分析,并结合其他学者的研究成果给出了TI介质波场模拟中压制数值频散的方法与策略:在已知介质频散关系时,对差分算子可实施算子校正;通过提高差分方程的阶数来提高波场模拟精度;采用流体力学中守恒式方程的通量校正传输方法来压制波场模拟中的数值频散;在实际正演模拟时,采用交错网格高阶有限差分方程,不仅在空间上采用高阶差分,而且在时间上也要采用高阶差分,否则只在单一方向上(空间或时间)提高方程的阶数对压制数值频散也不会取得理想的效果.  相似文献   

9.
横向各向同性介质地震波场数值模拟研究   总被引:8,自引:8,他引:0       下载免费PDF全文
地震波场数值模拟是理解地震波在地下介质中的传播特点,帮助解释观测数据的有效手段,而提高计算精度和运算效率是所有波场数值模拟方法研究所追求的目标.有限差分技术是求解波动方程计算效率最高、应用最为广泛的方法之一.但传统的有限差分技术计算过程中的数值频散问题影响了该技术的计算精度与计算效率.本文通过交错网格高阶有限差分技术与通量校正传输方法(Flux|corrected transport method,FCT)相结合, 对横向各向同性介质(Transverse isotropic medium,TI)一阶速度|应力弹性波动方程组进行了数值求解研究.波场快照数值模拟结果表明,本文研究的数值模拟方法与波动方程二阶有限差分方法、交错网格四阶有限差分方法相比,在压制网格数值频散方面有明显的优势,计算精度提高,而且可以利用较大的空间步长,提高计算效率.  相似文献   

10.
本文利用交错网格、辅助网格、旋转交错网格、同位网格有限差分方法分别模拟了二维弹性TTI介质和二维黏弹性TTI介质中的地震波传播.在稳定性条件内,选用不同的网格间距及时间间隔,通过波场快照、合成理论地震图较为系统分析对比了这四种不同网格有限差分数值模拟在计算精度、CPU时间、相移、频散、以及保幅方面的优缺点.数值模拟结果表明:1)这四种不同网格有限差分算法都是很好的波场数值模拟算法;2)就CPU计算时间而言,旋转交错网格有限差分算法的计算效率最高;3)从计算精度来看,同位网格有限差分的计算精度最高;4)从振幅保护方面来看,四种网格的保护振幅的能力相当;5)相移方面,当网格间距增大时,交错网格和旋转交错网格有可能出现相移现象;6)频散方面,同位网格的频散现象不明显.  相似文献   

11.
有限差分法广泛应用于地震波场的数值延拓,确定合适的有限差分算子以减小数值频散是有限差分法的一个重要研究内容。近年来为了进一步抑制数值频散和增加时间步长,新的有限差分模板得到了应用,对于此,前人使用泰勒展开方法和最小二乘方法确定有限差分算子系数。本文在以前工作的基础上,使用改进的线性方法确定新模板的有限差分系数,并与传统模板线性方法进行对比;通过频散分析和正演模拟验证出新模板线性方法能够更好地保持频散关系,在相同的精度下效率提高了一倍,从而说明了改进的线性方法的有效性。  相似文献   

12.
Numerical simulation of the acoustic wave equation is widely used to theoretically synthesize seismograms and constitutes the basis of reverse‐time migration. With finite‐difference methods, the discretization of temporal and spatial derivatives in wave equations introduces numerical grid dispersion. To reduce the grid dispersion effect, we propose to satisfy the dispersion relation for a number of uniformly distributed wavenumber points within a wavenumber range with the upper limit determined by the maximum source frequency, the grid spacing and the wave velocity. This new dispersion‐relationship‐preserving method relatively uniformly reduces the numerical dispersion over a large‐frequency range. Dispersion analysis and seismic numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

13.
We propose new implicit staggered‐grid finite‐difference schemes with optimal coefficients based on the sampling approximation method to improve the numerical solution accuracy for seismic modelling. We first derive the optimized implicit staggered‐grid finite‐difference coefficients of arbitrary even‐order accuracy for the first‐order spatial derivatives using the plane‐wave theory and the direct sampling approximation method. Then, the implicit staggered‐grid finite‐difference coefficients based on sampling approximation, which can widen the range of wavenumber with great accuracy, are used to solve the first‐order spatial derivatives. By comparing the numerical dispersion of the implicit staggered‐grid finite‐difference schemes based on sampling approximation, Taylor series expansion, and least squares, we find that the optimal implicit staggered‐grid finite‐difference scheme based on sampling approximation achieves greater precision than that based on Taylor series expansion over a wider range of wavenumbers, although it has similar accuracy to that based on least squares. Finally, we apply the implicit staggered‐grid finite difference based on sampling approximation to numerical modelling. The modelling results demonstrate that the new optimal method can efficiently suppress numerical dispersion and lead to greater accuracy compared with the implicit staggered‐grid finite difference based on Taylor series expansion. In addition, the results also indicate the computational cost of the implicit staggered‐grid finite difference based on sampling approximation is almost the same as the implicit staggered‐grid finite difference based on Taylor series expansion.  相似文献   

14.
TTI介质的交错网格伪P波正演方法   总被引:2,自引:2,他引:0       下载免费PDF全文
研究了三维弱各向异性近似下,利用伪P波(伪纵波)模拟弹性波场P分量在倾斜对称轴的横向各向同性(TTI)介质中的传播过程,并对比了分别基于弹性Hooke定律、弹性波投影和运动学色散方程所建立的三种二阶差分伪P波方程的正演特点.目前这些伪P波方程数值计算主要采用规则网格差分,但是规则网格在TTI模拟中有低效率、低精度以及不稳定的缺点.为了提高计算的精度,本文构建出相应方程的交错网格有限差分格式.通过对比伪P波方程在三维TTI介质中不同的数值模拟的表达形式,本文认为基于色散方程所建立的伪P波方程在模拟弹性波中P波传播的过程中具有最小的噪声.本文分析不同的各向同性对称轴空间角度的频散特征,并引入适当的横波速度维持计算的稳定.二维模型算例表明,本文提出的交错网格正演算法可以得到稳定光滑的伪P波正演波场.使用本文交错网格算法对二维BP TTI模型的逆时偏移也具有较稳定的偏移结果.  相似文献   

15.
In this paper, we propose a nearly‐analytic central difference method, which is an improved version of the central difference method. The new method is fourth‐order accurate with respect to both space and time but uses only three grid points in spatial directions. The stability criteria and numerical dispersion for the new scheme are analysed in detail. We also apply the nearly‐analytic central difference method to 1D and 2D cases to compute synthetic seismograms. For comparison, the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method are used to model acoustic wavefields. Numerical results indicate that the nearly‐analytic central difference method can be used to solve large‐scale problems because it effectively suppresses numerical dispersion caused by discretizing the scalar wave equation when too coarse grids are used. Meanwhile, numerical results show that the minimum sampling rate of the nearly‐analytic central difference method is about 2.5 points per minimal wavelength for eliminating numerical dispersion, resulting that the nearly‐analytic central difference method can save greatly both computational costs and storage space as contrasted to other high‐order finite‐difference methods such as the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号