首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 121 毫秒
1.
青藏高原东南部地区瑞雷波相速度层析成像   总被引:13,自引:7,他引:6       下载免费PDF全文
本研究收集了"中国地震科学探测台阵-南北地震带南段"项目325个流动宽频带台站于2011年8月至2012年9月记录的远震垂直向资料,利用双台法测得了3594条独立路径上的瑞雷波相速度频散曲线,反演得到了青藏高原东南部地区周期10~60s瑞雷波的相速度分布图像.空间分辨尺度图表明,在台站覆盖范围内的绝大部分地区横向分辨率达到50km.2D相速度分布图显示,青藏高原东南部地区地壳上地幔S波速度结构存在较明显的横向非均匀性.短周期(如10s)的相速度分布主要受地表沉积层厚度的影响.绝大多数地震发生在周期15s相速度图上的低速区或高低速的陡变梯度带附近,充分说明该区的强震活动与中上地壳速度结构的变化有直接关系.中等周期(如20~30s)的相速度分布主要与中下地壳速度结构、地壳厚度密切相关,小江断裂、松潘—甘孜块体呈现最显著的低速,可能暗示这两处的中、下地壳存在低速层.较长周期(如40~60s)的相速度分布与上地幔顶部热状态和构造活动(如岩浆作用)有关.滇西南地区表现为大范围的显著低速,可能暗示滇西南地区上地幔顶部物质存在部分熔融.不同构造块体下方的频散曲线,具有不同的相速度特征.腾冲火山下方的频散曲线在10~60s一直为较低的速度,尤其是到40s以后,相速度随周期的变大增速明显放缓,至60s比其他任何块体速度都低,暗示腾冲火山区下方的低速至少来自上地幔顶部(约100km).  相似文献   

2.
基于青藏高原东北缘及邻区流动密集地震台阵——喜马拉雅二期2013年12月至2015年8月期间的三分量连续波形数据,采用背景噪声成像方法获得了Rayleigh波周期为6~30 s和Love波6~25 s的二维相速度.6~12 s Rayleigh和Love波相速度在鄂尔多斯盆地及银川—河套地堑呈现明显的低速异常,而在西秦岭造山带和中亚造山带则显示高速异常.16~25 s的相速度同时受中下地壳及上地幔顶部速度结构和地壳厚度影响.此周期范围内,位于青藏高原的祁连地块和松潘甘孜地块北部呈现大范围相速度低速异常,青藏高原周边的鄂尔多斯和西秦岭造山带表现为高速异常.青藏高原与周边块体相速度的横向不均匀性,可能反映了构造活动或者地壳厚度的差异.此外,中亚造山带在周期16~20 s时,Rayleigh波相速度高低相间,但Love波大范围高速异常,两者差异可能反映了径向各向异性的影响.  相似文献   

3.
利用中美合作在青藏高原布设的11台 PASSCAL 宽频带数字地震仪记录到的瑞利面波资料,测得青藏高原内不同块体的瑞利面波相速度(周期为10——120s),并反演了不同路径的地壳上地幔 S 波速度结构,发现青藏高原 S 波速度结构的横向变化显著.亚东——安多裂谷带的面波频散与相邻的块体差异最大,温泉至日喀则路径的相速度比其它路径的相速度明显偏高.该路径的地壳平均速度为3.79km/s,比其它路径的地壳平均速度3.40——3.50km/s高得多.青藏高原内不同块体的地壳中均有低速层存在,但低速层的厚度和速度不尽相同.位于北部的松潘甘孜块体。其地壳较薄约为65km,Sn 速度为4.48km/s,而且在约120km 深处的上地幔中存在一厚度为60km,速度为4.15km/s 的上地幔低速层.其它路径的上地幔速度相近,均没有明显的上地幔低速层出现.羌塘块体与拉萨块体的瑞利波相速度和 S 波速度结构极为相似,上地幔顶部的速度较松潘甘孜块体略高.在青藏高原广大地区中,地壳的平均速度低,普遍存在地壳低速层;上地幔顶部的横波速度为4.50——4.65km/s,上地幔中或者没有低速层或者低速层埋藏较深.   相似文献   

4.
本文以太行山为界将华北地区分为东西两部分,东部为河淮块体,西部为鄂尔多斯块体.利用最小二乘法,从混合路径基阶瑞利面波群速度频散提取两块体的纯路径频散,并反演其地壳、上地幔的层状结构.所得结表果明,两块体的面波频散和地壳、上地幔结构存在明显差异.东部的河淮块体地壳较薄,地壳内平均速度比西部的鄂尔多斯块体壳内平均速度约低0.13km/s,壳内20km深度左右出现低速层;而西部的块体壳内速度成层递增,未见低速层出现.两块体上地幔顶部速度均偏低,地幔低速层的埋藏深度基本相同.但西部块体地幔低速层厚,且比东部块体地幔低速层的速度约低0.3km/s.  相似文献   

5.
本文以太行山为界将华北地区分为东西两部分,东部为河淮块体,西部为鄂尔多斯块体.利用最小二乘法,从混合路径基阶瑞利面波群速度频散提取两块体的纯路径频散,并反演其地壳、上地幔的层状结构.所得结表果明,两块体的面波频散和地壳、上地幔结构存在明显差异.东部的河淮块体地壳较薄,地壳内平均速度比西部的鄂尔多斯块体壳内平均速度约低0.13km/s,壳内20km深度左右出现低速层;而西部的块体壳内速度成层递增,未见低速层出现.两块体上地幔顶部速度均偏低,地幔低速层的埋藏深度基本相同.但西部块体地幔低速层厚,且比东部块体地幔低速层的速度约低0.3km/s.  相似文献   

6.
基于华南地块及其邻区609个宽频带地震台站2010~2012年的垂直分量连续波形记录,通过波形互相关和叠加计算得到各台站对间的经验格林函数.采用时频分析法提取出大量高质量的Rayleigh波相速度频散曲线,并反演得到了研究区周期6~50s的Rayleigh波相速度分布图像.结果显示周期6~10s的相速度分布与地壳中上部地质特征一致性较好,区域内的主要盆地和一些小尺度地堑和盆地呈现低速异常,造山带和褶皱带则呈现高相速度分布特征;周期20~30s的相速度分布以太行山-武陵山重力梯度带和地壳厚度突变带为界,西部地区主要表现为低速异常,东部地区则整体表现为高速异常,其中秦岭-大别造山带以南的华南地块东部相对以北的华北地块东部而言具有相对更高的相速度,可能与中生代以来华北克拉通和华南地块的构造演化存在差异有关;周期40~50s的相速度分布主要与下地壳和上地幔速度结构的横向变化有关,青藏高原东部因地壳厚度较厚表现为显著的低速异常,华北平原东南部和华南沿海地区表现为相对的高低速相间分布,四川盆地、鄂尔多斯盆地南部表现为显著高速异常,体现这两个块体稳定的上地幔岩石圈特征.从不同周期的相速度分布来看,华南地块西边界南段在云南东部及附近地区,相速度分布与当前的块体边界划分不太相符,仍需要深入研究.四川盆地相速度随着周期的增加存在"整体低速-盆地中部向外渐变高速-整体高速"的分布特点,反映了该盆地中部结晶基底和上地幔的高速.位于华北地块的鄂尔多斯盆地南部中上地壳存在一定程度的非均匀性,下地壳-上地幔顶部可能存在高速异常体.秦岭-大别造山带中段和位于桂东南的广西加里东期花岗岩分布区域在一定的周期范围存在显著高速异常体,其形成机理有待进一步分析.  相似文献   

7.
通过对南北地震带北段区域所布设的676个流动地震台站观测资料进行处理,联合反演面波频散与接收函数数据,获得了研究区内地壳厚度、沉积层厚度的分布情况以及地壳上地幔高分辨率S波速度结构成像结果.反演结果显示研究区地壳厚度从青藏高原东北缘向外总体逐渐变薄,秦岭造山带地壳厚度较同属青藏高原东北缘的北祁连块体明显减薄;鄂尔多斯盆地及河套盆地分布有非常厚的沉积层,阿拉善块体部分区域也有一定沉积层分布,沉积层与研究区内盆地位置较为一致;松潘—甘孜块体、北祁连造山带等青藏高原东北缘总体表现为S波低速异常;在中下地壳,松潘—甘孜块体下方的低速体比北祁连造山带下方的低速体S波速度值更小、分布深度更浅,更有可能对应于部分熔融的地壳;鄂尔多斯盆地在中下地壳以及上地幔内有着较大范围的高速异常一直延伸到120 km以下,而河套盆地地幔只在80 km以上部分有着高速异常的分布,此深度可能代表了河套盆地的岩石圈厚度,来自深部地幔的热物质上涌造成了该区域的岩石圈减薄;阿拉善块体在地壳和上地幔都表现出高低速共存的分布特征,暗示阿拉善块体西部岩石圈可能受青藏高原东北缘的挤压作用发生改造.  相似文献   

8.
中国大陆地质构造历史非常复杂,岩石圈长期积累的形变较大,而利用地震面波传播的各向异性是研究岩石圈形变特征的强有力手段. 本文利用双台窄带通滤波-互相关方法与基于图像分析的相速度频散曲线提取技术,提取Rayleigh面波相速度频散资料,进而反演中国大陆及邻区20~120 s周期Rayleigh面波相速度方位各向异性空间分布图像. 检测板测试结果显示:中国大陆大部分区域的方位各向异性横向分辨率在5°左右. 各向异性研究结果表明:中国大陆地壳上地幔方位各向异性特征存在显著的空间差异,反映出形变特征的空间差异;104°E以东地区地壳上地幔各向异性弱于西部地区,表明其构造变形总体弱于西部地区. 青藏地块及其东缘地区地壳与上地幔顶部变形最为强烈. 但东部的局部地区如华南地块与珠江口地区、鄂尔多斯盆地西南缘以及秦岭-大别造山带,较强的各向异性显示这些区域在不同时期也经历了强变形. 青藏地块内中短周期快波方向自西向东顺时针旋转变化可能指示板块碰撞与挤压过程中软弱物质的流变方向. 青藏地块西部中下地壳和上地幔形变模式相似,可能处于壳幔耦合状态;而中东部及东缘地区地壳上地幔形变模式存在明显差异,壳幔似乎不具备垂直连贯的形变特征. 位于青藏地块北部的塔里木盆地、柴达木盆地以及祁连褶皱带同样经历了强变形. 包括四川盆地在内的上扬子地块快波方向的变化显示中地壳与下地壳上地幔形变模式不同,而形变特征一致的下地壳与上地幔应为强耦合. 大约以103°E为界,龙门山断裂带可分为南西段和北东段,南西段处于低速区,而北东段位于高速区,且方位各向异性强度明显大于南西段;2008年5月12日汶川MS8.0级地震沿断裂带的单侧破裂模式除与北东段的高应力积累有关外,还可能与北东段地下介质物性存在密切关系,高速坚硬岩体的发育有利于应变能的积累与集中释放.  相似文献   

9.
青藏高原中东部地壳和上地幔顶部P波层析成像   总被引:1,自引:1,他引:0       下载免费PDF全文
为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。   相似文献   

10.
青藏高原东北缘远震P波走时层析成像研究   总被引:5,自引:2,他引:3       下载免费PDF全文
利用青藏高原东北缘地区固定地震台网2010年4月至2015年3月期间记录的远震事件,采用多道波形互相关方法(Multi-Channel Cross-Correlation)拾取了10697个有效P波相对走时残差数据,进而采用FMTT (Fast Marching Teleseismic Tomography)方法获得了青藏高原东北缘上地幔400 km深度范围内的P波速度结构,结果显示:秦祁地块下面存在深达70 km的高速异常,阻断了青藏高原块体中下地壳低速层向东北方向的延伸;40~140 km深度范围内,四川西南部存在一个低速区,该低速区穿过龙门山断裂带进入到四川盆地内部;祁连山造山带东部低速异常区从地壳一直延伸到上地幔400 km处,表明这里可能存在一个上地幔到地壳间的热流通道;松潘-甘孜地块分布大面积的低速异常区,而鄂尔多斯地块西南缘相对速度较高,这与青藏高原为软块体、介质密度低和鄂尔多斯块体为硬块体、介质密度高相吻合.  相似文献   

11.
We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau,the Ordos block and the Sichuan basin.The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China.Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s.Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 km.The phase velocities at short periods (20 s) are lower in the Sichuan basin,the northwest segment of the Ordos block and the Weihe graben,and outline sedimentary deposits.At intermediate and long periods (25 s),strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau,reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east.Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau,the Sichuan basin and the Ordos block.The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle.There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau,whose width narrows towards the eastern margin of the plateau.No low velocity zone is apparent beneath the Qinling orogen,suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle.  相似文献   

12.
1999~2000年从青海玛沁到陕西榆林,横跨青藏高原东北缘和鄂尔多斯布设了一条由47台宽频带数字地震仪组成的长约1000km的流动地震台阵观测剖面.利用记录到的远震体波波形资料和接收函数方法获得了剖面下0~100km深度的地壳和上地幔S波速度结构.结果表明,沿观测剖面地壳结构显示了明显的分块特征; 地壳厚度自东向西由40km增加到64km左右;在海原地震带下方和西秦岭断裂以西到日月山断裂之间的区域Moho间断面结构复杂;在1920年海原震区及其西侧,上地壳存在明显的低速层,在该地区的绝大部分地震分布在该低速层东边界偏向高速区一侧;祁连山东缘Moho面有约4km的深度间断,壳内向西逐渐减薄的低速层内有大量微震发生,沿祁连山的逆冲加走滑的构造运动在深度上已经穿透了Moho面;在玛沁断裂和日月山断裂之间,上地壳存在厚度很大的低速层,同时该区域下地壳也明显加厚.研究结果表明,青藏高原东北缘与鄂尔多斯地块之间的过渡带地壳变形强烈,地壳结构较为破碎,这与该地区地震频发相一致.  相似文献   

13.
基于Love波相速度反演南北地震带地壳上地幔结构   总被引:5,自引:3,他引:2       下载免费PDF全文
收集了南北地震带区域地震台网中292个地震台站2008年1月至2011年3月期间的地震波形数据,由频时分析方法提取了Love波相速度频散曲线,经过反演得到了研究区内的Love波相速度分布.根据Love波纯路径频散,采用线性反演方法对0.25°×0.25°的网格点进行了一维S波速度结构反演,利用线性插值获取了南北地震带地区的三维S波速度结构.结果显示了松潘—甘孜地体和川滇菱形块体地区的下地壳具有明显的S波低速层分布,该异常分布特征支持解释青藏高原隆升及其地壳物质运移的下地壳流模型.在100至120km深度上,川滇菱形块体西北部呈现较强的S波高速异常,这可能是印度岩石圈板块沿喜马拉雅东构造结下插至该区域所致,该区域下地壳的低速软弱物质与上地幔的高速强硬物质形成了鲜明对比,暗示了地壳和上地幔可能具有不同的构造运动和变形方式,这为该区域的壳幔动力学解耦提供了条件.  相似文献   

14.
Rayleigh wave phase velocities of South China block and its adjacent areas   总被引:2,自引:0,他引:2  
Using records of continuous seismic waveforms from 609 broadband seismic stations in the South China Block and its adjacent areas in 2010–2012, empirical Green's functions of surface waves were obtained from cross-correlation functions of ambient noise data between these stations. High quality phase velocity dispersion curves of Rayleigh waves were obtained using time-frequency analysis. These interstation dispersion curves were then inverted to build Rayleigh wave phase velocity maps at periods of 6–50 s. The results of phase velocity maps indicate that phase velocities at 6–10 s periods are correlated with the geological features in the upper crust. Major basins and small-scale grabens and basins display slow velocity anomalies; while most of the orogenic belts and the fold belts display high velocity anomalies. With the gravity gradient zone along Taihang Mountain to Wuling Mountain as the boundary for the phase velocity maps at period of 20–30 s, the western area mainly displays low velocity anomalies, while the eastern side shows high velocity anomalies. Phase velocities in the eastern South China Block south to the Qinling-Dabie orogenic belt is higher than that in the eastern North China Block to the north, which is possibly due to the differences of tectonic mechanisms between the North China Craton and the South China Block. The phase velocities at periods of40–50 s are possibly related to the lateral variations of the velocity structure in the lower crust and upper mantle: The low-velocity anomalies in the eastern part of the Tibetan Plateau are caused by the thick crust; while the Sichuan Basin and the southern part of the Ordos Basin display distinct high-velocity anomalies, reflecting the stable features of the lithosphere in these blocks. The lateral variation pattern of phase velocities in the southern part of the South China Block is not consistent with the surface trace of the block boundary in the eastern Yunnan Province and its vicinities. The phase velocities in the Sichuan Basin are overall slow at short periods and gradually increase with period from the central part to the edge of the basin, indicating the features of shallower basement in the center and overall stable lithospheric mantle of the basin. The middle and upper crust of the southern Ordos Basin in the North China Block is heterogeneous, while in lower crust and the uppermost mantle the phase velocities mainly exhibit high anomalies. High-velocity anomalies are widespread at the middle of the Qinling-Dabie orogenic belt, as well as the areas in southeastern Guangxi with Caledonian granite explosion, but its detailed mechanism is still unclear.  相似文献   

15.
利用"中国地震科学台阵探测"在南北地震带北段布设的670套宽频带地震台站记录到的面波资料,使用新近发展的程函方程面波层析成像方法,获得了青藏高原东北缘及周边地区12~60 s周期范围比以往成像结果具有更高分辨率的瑞利面波相速度分布图像.青藏高原东北缘的祁连褶皱系西段、秦岭褶皱系西段和松潘一甘孜褶皱系,在16~60s周期范围内均显示出明显的低速异常分布,表明该地区的地壳力学强度较低,在强烈的构造应力作用下易发生形变.与西段不同,祁连褶皱系东段和秦岭褶皱系中段的相速度分布特征揭示,其中下地壳的速度明显高于高原内部区域.鄂尔多斯块体整体上表现为稳定块体具有的高速特征,但其西部边缘在中上地壳的速度比块体中部地区偏低,且存在一定的不均匀性.鄂尔多斯块体西北缘的临河断陷盆地和西缘的银川断陷盆地,在较短的周期范围内(12~20 s)表现为局部低速特征,但与银川断陷盆地不同,临河断陷盆地的低速特征可一直延续至60 s周期以上,表明该盆地下方地壳及上地幔速度明显偏低,可能与深部热作用有关.阿拉善块体与其北部地区的速度差异主要表现在中上地壳,这一现象值得今后进一步探讨.基于程函方程面波层析成像方法给出了青藏高原东北缘及周边地区高分辨率的成像结果,揭示了以往面波层析成像难以获得的深部细节特征,为该地区的深部构造研究提供了新的信息.  相似文献   

16.
秦岭—大别造山带西起青藏高原东北缘,东至郯庐断裂带,是华北板块和扬子板块之间的碰撞造山带.本文收集陕、豫、皖、赣、湘、鄂、渝等区域地震台网的160个宽频带地震台站连续两年地震背景噪声数据,用双台站互相关算法获得瑞利面波经验格林函数,提取相速度频散曲线,并根据面波层析成像反演得到秦岭—大别及邻区周期8~35 s范围内相速度分布图像.结果显示,大别地块在14 s相速度分布图中呈现低速异常,与8 s相速度分布图中的高速异常形成鲜明对比,反映大别HP/UHP(high pressure/ultrahigh pressure metamorphic rocks,高压/超高压变质岩)的影响仅存在于上地壳.25 s相速度图中,大致以太行一武陵重力梯度带为界,东部以高速异常为主,西部以低速异常为主,反映了地壳东薄西厚的结构特征.14~35 s相速度分布图显示郯庐断裂带南段东西两侧的显著差异,佐证了郯庐断裂带发生大规模左行平移运动时,其南段可能切入壳幔边界.同时,郯庐断裂带南段可能存在一个热物质上涌的通道,熔融的热物质通过该通道上升,混入大别地区的中下地壳,造成了红安一大别造山带的差异隆升.南秦岭与四川盆地东北部表现为低速异常,是否与青藏高原物质东流或者南秦岭的拆沉有关,还有待于进一步深入研究.  相似文献   

17.
青藏高原东南缘是研究印度—欧亚板块碰撞过程、块体间相互作用和壳幔变形机制的重要地区.本文利用川滇地区流动地震台阵和固定地震台网共557个台站的连续波形数据,基于改进的背景噪声处理流程和分析方法得到了6023条瑞利波群速度频散曲线,反演获得了6~48s的瑞利波群速度分布图像.结果显示在四川盆地内部短周期群速度分布较好地揭示了盆地内沉积层厚度的横向变化.在30~48s周期,四川盆地西部群速度存在南低、北高的特征,推测是南部中下地壳和上地幔温度较高引起的.温度的增高降低了地壳的力学强度,在青藏高原东向挤压作用下盆地西南部地壳更易发生变形,并导致脆性上地壳在新生代产生地壳缩短和褶皱、断裂等地质活动.攀枝花及其周边地区从地壳浅部至上地幔深度的高速异常体,可能与基性和超基性岩的侵入有关.该高速体具有较大的介质强度,在一定程度上阻碍了青藏高原物质东南向的运移,这可能是造成丽江—小金河断裂两侧巨大高程差异的重要因素.自24s开始,南盘江盆地表现为明显的高速异常,与华南块体西南部其他区域的深部结构存在明显差异.反演的S波速度结构揭示,自中上地壳至上地幔,南盘江盆地的速度一直高于北侧其他区域.结合此地区的地壳运动模式,推测介质S波速度较高、力学强度较大的南盘江盆地对青藏高原物质的东南向逃逸具有一定的阻挡作用.  相似文献   

18.
王琼  高原 《地球物理学报》2018,61(7):2760-2775
本研究收集了甘肃、青海、宁夏等118个宽频带数字地震台站的连续波形资料,利用噪声互相关,经过计算和筛选,在5~38 s范围内,共得到5773条瑞利波相速度频散曲线.然后采用1°×1°的网格划分,反演获得青藏高原东北缘相速度和方位各向异性分布.结果表明:短周期8~12 s内,鄂尔多斯从低速异常变为高速异常;该周期范围内各向异性结果与区域断裂走向有很好的一致性.18~25 s周期内,祁连地块、松潘-甘孜地块、羌塘地块低速异常范围逐渐变大,随周期增加地壳低速异常与人工探测结果相符;鄂尔多斯表现为速度随周期增加逐渐变大,说明其中下地壳速度相对偏高,不存在低速异常;该周期范围内的各向异性特征表现为,祁连地块和松潘甘孜地块大致呈NW-SE方向,而青藏高原内部快波方向显示了顺时针旋转的形态.在30~35 s范围内面波速度主要受莫霍面深度和莫霍面附近介质速度的影响,与地壳厚度分布有非常好的吻合.综合不同方法获得的各向异性研究结果,支持印度-欧亚板块的碰撞使青藏高原东北缘地壳发生缩短和逐渐隆升的观点,认为整个岩石圈的垂直缩短变形是青藏高原东北缘的主要形成机制.  相似文献   

19.
According to a Sino-U. S. joint project, eleven broadband digital PASSCAL seismometers had been deployed inside the Tibetan Plateau, of which 7 stations were on the profile from Lhasa to Golmud and other 4 stations situated at Maxin, Yushu, Xigatze and Linzhi. Dispersions and phase velocities of the Rayleigh surface waves (10s–120s) were obtained on five paths distributed in the different blocks of Tibetan Plateau. Inversions of the S-wave velocity structures in Songpan-Ganzi block, Qiang-Tang block, Lhasa block and the faulted rift zone were obtained from the dispersion data. The results show that significant lateral variation of the S-wave velocity structures among the different blocks exists. The path from Wenquan to Xigatze (abbreviated as Wndo-Xiga) passes through the rift-zone of Yadong-Anduo. The phase velocities of Rayleigh waves from 10s to 100s on this path are significantly higher than that on other paths. The calculated mean crustal velocity on this path is 3.8 km/s, much greater than that on other paths, where mean crustal velocities of 3.4–3.5 km/s are usually observed. Low velocity zones with different thicknesses and velocities are observed in the middle-lower crust for different paths. Songpan-Ganzi block, located in the northern part of Tibetan Plateau is characterized by a thinner crust of 65 km thick and a prominent low velocity zone in the upper mantle. The low velocity zone with a velocity of 4.2 km/s is located at a depth form 115 km to 175 km. While in other blocks, no low velocity zone in the upper mantle is observed. The value of Sn in Songpan-Ganzi is calculated to be 4.5 km/s, while those in Qiang-Tang and Lhasa blocks are about 4.6 km/s. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 566–573, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号