首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marine seismic reflection profiles from offshore SW Taiwan combined with onland geological data are used to investigate the distribution and nature of the deformation front west of Taiwan. Locations of the frontal structure west of Taiwan are generally connected in a linear fashion, although the alignment of frontal structures is offset by strike-slip faults. The deformation front begins from the northern Manila Trench near 21°N and continues northward along the course of the Penghu Submarine Canyon in a nearly N–S direction north of 21°N until it reaches the upper reaches of Penghu Canyon at about 22°15′N. The deformation front then changes direction sharply to the northeast. It connects to the Chungchou thrust fault or the Tainan anticline in the coastal plain and continues northwards along the outer Western Foothills to the northern coast of Taiwan near 25°N. Characteristics of structural style, strain regime, sedimentation and tectonics vary along the trend of the deformation front. Ramp anticlines, diapiric intrusion and incipient thrust faults are commonly associated with the deformation front. Variations in structural style along strike can be related to different stages of oblique collision in Taiwan. The deformation front (collision front) west of Taiwan can be considered as a boundary between contraction in the Taiwan orogen and extension west of the collision zone. The deformation front east of the Tainan Basin and its northward extension along the outer limit of the Western Foothills is the surface trace separating the foreland thrust belt from the nearby foredeep, not a boundary between the Chinese and Taiwan margins. The submarine deformation front off SW Taiwan is the surface trace separating the submerged Taiwan orogenic wedge from the Chinese passive continental margin, not a surface trace of the plate boundary between the Eurasian and Philippine Sea plates.  相似文献   

2.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

3.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。  相似文献   

4.
SeaMARC II side-scan images, bathymetry, and single-channel seismic reflection data along the southern Peru—northern Chile forearc area between 16° and 23° S reveal a complex region of morpho-structural, submarine drainage and depression patterns. In the subducting plate area, the NW—SE trending primary normal fault system represented by trench-paralleled scarps was incipiently formed as the Nazca Plate was bent in the outer edge and further intensified as the plate approached the trench. The NE—SW trending secondary normal fault system that consists of discontinuous and smaller faults, usually intersect the primary trench-paralleled fault system. Similar to the Nazca Plate, the overriding continental plate also shows two major NW—SE and NE—SW trending fault systems represented by fault scarps or narrow elongated depressions.The submarine drainage systems represented by a series of canyon and channel courses appear to be partly controlled by the faults and exhibit a pattern similar to the onshore drainage which flows into the central region of the coastal area. Two large depressions occurring along the middle—upper slope areas of the continental margin are recognized as collapse and slump that perhaps are a major result of increased slope gradient. The subsidence of the forearc area in the southern Peru—northern Chile Continental Margin is indicated by: a) drainage systems flowing into the central region, b) the slope collapse and slumps heading to the central region, c) the deepening of the trench and inclining of the lower slope terrace to the central region, and d) submerging of the upper-slope ridge and the Peru—Chile Coast Range off the Arica Bight area.The subsidence of the forearc area in the southern Perunorthern Chile margin is probably attributed to a subduction erosion which causes wearing away and removal of the rock and sedimentary masses of the overriding plate as the Nazca Plate subducts under the South American Plate.  相似文献   

5.
Seismic imaging of gas hydrates in the northernmost South China sea   总被引:1,自引:1,他引:0  
Horizon velocity analysis and pre-stack depth migration of seismic profiles collected by R/V Maurice Ewing in 1995 across the accretionary prism off SW Taiwan and along the continental slope of the northernmost South China Sea were implemented for identifying gas hydrates. Similarly, a survey of 32 ocean-bottom seismometers (OBS), with a spacing of about 500 m, was conducted for exploring gas hydrates on the accretionary prism off SW Taiwan in April 2006. Travel times of head wave, refraction, reflection and converted shear wave identified from the hydrophone, vertical and horizontal components of these OBS data were applied for imaging P-wave velocity and Poisson’s ratio of hydrate-bearing sediments. In the accretionary prism off SW Taiwan, we found hydrate-bearing sediment, with a thickness of about 100–200 m, a relatively high P-wave velocity of 1.87–2.04 km/s and a relatively low Poisson’s ratio of 0.445–0.455, below anticlinal ridges near imbricate emergent thrusts in the drainage system of the Penghu and Kaoping Canyons. Free-gas layer, with a thickness of about 30–120 m, a relatively low P-wave velocity of 1.4–1.8 km/s and a relatively high Poisson’s ratio (0.47–0.48), was also observed below most of the bottom-simulating reflectors (BSR). Subsequently, based on rock physics of the three-phase effective medium, we evaluated the hydrate saturation of about 12–30% and the free-gas saturation of about 1–4%. The highest saturation (30% and 4%) of gas hydrates is found below anticlines due to N–S trending thrust-bounded folds and NE-SW thrusting and strike-slip ramps in the lower slope of the accretionary prism. We suggest that fluid may have migrated through the relay-fault array due to decollement folding and gas hydrates have been trapped in anticlines formed by the basement rises along the thrust faults. In contrast, in the rifted continental margin of the northernmost South China Sea, P-wave velocities of 1.9–2.2 km/s and 1.3–1.6 km/s, and thicknesses of about 50–200 m and 100–200 m, respectively, for a hydrate layer and a free-gas layer were imaged below the remnant and erosional ridges in the upper continental slope. High P-wave velocity of hydrate-bearing sediment below erosional ridges may also indicate high saturation of hydrates there. Normal faults due to rifting in the South China continental crust may have provided conduits for gas migration below the erosional ridges where P-wave velocity of hydrate-bearing sediment in the passive continental margin of the northernmost South China Sea is greater than that in the active accretionary prism off SW Taiwan.  相似文献   

6.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

7.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

8.
海底峡谷是陆源物质向深海运移的重要通道和深海油气资源储集的重要场所,海底峡谷在我国近海也广泛发育。通过对国外海底峡谷研究成果和方法的介绍和学习,我国海洋学家开始对冲绳海槽西坡、台湾周边海域、南海北部海域及世界上其它海域的海底峡谷进行深入的调查和研究,并取得了丰硕的成果。但与国际相比,我国海底峡谷研究还处在发现和描述的阶段,还需要进行系统的观测和深入的研究,来探讨海底峡谷的形成发育机制和控制因子,及其与我国近海演化和油气成藏的关系。  相似文献   

9.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

10.
Concentrations of selected heavy metals (Cr, Cu, Ni, Pb and Zn) from surface sediments, suspended particulate matter and settling particles in the southern Barcelona continental margin were studied in order to evaluate the environmental impact of the anthropogenic metals discharged by the Llobregat River in this Mediterranean area. The temporal variation of heavy metals discharged by this river onto the continental shelf is clearly related to the river water flow. Part of the fine sediment and associated heavy metals transported by the Llobregat River during periods of low river flow accumulate on the river bed, and they are totally removed and discharged onto the Barcelona continental shelf during sporadic river water flow increases. Metals produce significant anomalies of chromium (×2.5), copper (×3.4) and zinc (×3.7) in the surface sediments of the Llobregat prodelta and tend to be transported along the continental shelf following the mean flow. Metals associated with the finest suspended flocs transferred to the slope are controlled by the shelf-slope density front and are transported along slope by the general geostrophic current, instead of accumulating and becoming concentrated in the slope bottom sediments. Settling particulate matter collected in sediment traps on the Barcelona continental slope offshore of the shelf-slope front shows low heavy metal concentrations except in a few sediment trap samples that are significantly metal-enriched in chromium (×4.5) and zinc (×6.8). This enrichment is associated with very short and sporadic river flow increases and is only recorded inside the Foix submarine canyon, which acts as a preferential conduit for the shelf-slope sediment transfer.  相似文献   

11.
Using seismic and Chirp sonar profiles, this paper tests the hypothesis that hyperpycnal flows are the main factor controlling the formation and maintenance of the meandering Kaoping submarine canyon off SW Taiwan. Cross-section geometries, and erosional as well as depositional features vary along the canyon course. In the proximal, sinuous part of the canyon, down-cutting into the shelf strata has created a relief of 340 m. The cause of this intense erosion of the seafloor is suggested to be the frequent development of hyperpycnal flows. A seismic section across a meander in the distal part of the canyon shows levees formed by overspilled sediments at the outer bend, and a terrace characterized by relatively flat stratified facies at the inner bend. The geological setting and climatic conditions in SW Taiwan (e.g. earthquakes, typhoons, floods), as well as major river–canyon connections (for example, direct input of highly concentrated suspended sediment) would all promote hyperpycnal flow generation. This causes axial incision, canyon wall slumping, and the formation of levees by spill-over deposition in the upper reach of the Kaoping Canyon.  相似文献   

12.
The Yithi submarine canyons,composed of four canyons less than 60 km in length,are located on the narrowest part of the East China Sea(ECS) slope.They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient(along the canyon axis) of 3°(<1 000 m) and 0.7°(>1000 m).The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough.Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope.The whole canyon system consists of three parts:the canyon,the channel and the fan.Slumps and slides often develop in the upper part of canyon where the water depth is less than 1000 m,and the turbidities usually developed on the fan.The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons.Canyon-fans are often associated with small angle progradational reflection.Most canyon-fans and levees were transversely cut by active normal faults with NEE-SWW trending that are coupled to the modern extension of the Okinawa Trough.According to the age of formation of canyon-fans and sediments incised by canyons,we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.  相似文献   

13.
The continental margin offshore of western Ireland offers an opportunity to study the effects of glacial forcing on the morphology and sediment architecture of a mid-latitude margin. High resolution multibeam bathymetry and backscatter data, combined with shallow seismic and TOBI deep-towed side-scan sonar profiles, provide the basis for this study and allow a detailed geomorphological interpretation of the northwest Irish continental margin. Several features, including submarine mass failures, canyon systems and escarpments, are identified in the Rockall Trough for the first time. A new physiographic classification of the Irish margin is proposed and linked to the impact of glaciations along the margin. Correlation of the position and dimensions of moraines on the continental shelf with the level of canyon evolution suggests that the sediment and meltwater delivered by the British–Irish Ice Sheet played a fundamental role in shaping the margin including the upslope development of some of the canyon systems. The glacial influence is also suggested by the variable extent and backscatter signal of sedimentary lobes associated with the canyons. These lobes provide an indirect measurement of the amount of glaciogenic sediment delivered by the ice sheet into the Rockall Trough during the last glacial maximum. None of the sedimentary lobes demonstrates notable relief, indicating that the amount of glaciogenic sediment delivered by the British–Irish Ice Sheet into the Rockall Trough was limited. Their southward disappearance suggests a more restricted BIIS, which did not reach the shelf edge south of 54°23′ N. The various slope styles observed on the Irish margin represent snapshots of the progressive stages of slope development for a glacially-influenced passive margin and may provide a predictive model for the evolution of other such margins.  相似文献   

14.
We utilized reflection seismic and bathymetric data to infer the canyon-infilling, fold uplift, and gas hydrate occurrences beneath the frontal fold at the toe of the accretionary wedge, offshore SW Taiwan. The lateral migrating paleo-Penghu canyons has cut across the frontal fold with six distinct canyon/channel incisions marked by channel infills. The longitudinal bathymetric profile along the modern canyon course shows a knickpoint of ~300 m relief at this frontal fold, indicating that the rate of fold uplift is greater than that of canyon incision. The age for the initial thrusting of this fontal fold is around 240 kyr ago, as estimated by using the maximum thickness of growth strata of this fold divided by the sedimentation rate obtained from a nearby giant piston core. Bottom simulating reflector (BSR) on seismic sections indicates the base of gas hydrate stability zone. Beneath the frontal fold, there is a widespread occurrence of BSRs, suggesting the highly probable existence of substantial quantities of gas hydrates. A seismic flat spot and a few push-down reflectors below BSR are found lying beneath the anticlinal axis with bathymetric four-way dip closure. The flat spot, cutting across a series of dipping reflections beneath BSR, may indicate the contact between free gas and its underlying formation water. The push-down reflectors beneath BSRs are interpreted to result from abundant free gas hosted beneath the gas hydrate stability zone. The multiple paleo-canyon infills seen along and beneath the frontal fold and above BSRs may provide thick porous sands to host gas hydrates in the frontal fold.  相似文献   

15.
Satellite imagery and offshore magnetic data were analysed to correlate regional tectonic elements on the inner continental shelf off Konkan and the adjacent Deccan plateau. Three statistically important lineament trends—N-S, WNW-ESE and ENE-WSW—that prevail on land are correlatable well with the offshore trends. This positive correlation suggests simultaneous deformation. The major magnetic lineament observed off Jaigad Bay, west coast of India, may be the extension of onshore lineaments. The correlation of both the offshore and onshore trends indicates that the fracture pattern of the crystalline basement has also controlled the offshore structural pattern.  相似文献   

16.
During TAiwan Integrated GEodynamics Research of 2009, we investigated data from thirty-seven ocean-bottom seismometers (OBS) and three multi-channel seismic (MCS) profiles across the deformation front in the northernmost South China Sea (SCS) off SW Taiwan. Initial velocity-interface models were built from horizon velocity analysis and pre-stack depth migration of MCS data. Subsequently, we used refracted, head-wave and reflected arrivals from OBS data to forward model and then invert the velocity-interface structures layer-by-layer. Based on OBS velocity models west of the deformation front, possible Mesozoic sedimentary rocks, revealed by large variation of the lateral velocity (3.1–4.8 km/s) and the thickness (5.0–10.0 km), below the rift-onset unconformity and above the continental crust extended southward to the NW limit of the continent–ocean boundary (COB). The interpreted Mesozoic sedimentary rocks NW of the COB and the oceanic layer 2 SE of the COB imaged from OBS and gravity data were incorporated into the overriding wedge below the deformation front because the transitional crust subducted beneath the overriding wedge of the southern Taiwan. East of the deformation front, the thickness of the overriding wedge (1.7–5.0 km/s) from the sea floor to the décollement decreases toward the WSW direction from 20.0 km off SW Taiwan to 8.0 km at the deformation front. In particular, near a turn in the orientation of the deformation front, the crustal thickness (7.0–12.0 km) is abruptly thinner and the free-air (?20 to 10 mGal) and Bouguer (30–50 mGal) gravity anomalies are relatively low due to plate warping from an ongoing transition from subduction to collision. West of the deformation front, intra-crustal interfaces dipping landward were observed owing to subduction of the extended continent toward the deformation front. However, the intra-crustal interface near the turn in the orientation of the deformation front dipping seaward caused by the transition from subduction to collision. SE of the COB, the oceanic crust, with a crustal thickness of about 10.0–17.0 km, was thickened due to late magmatic underplating or partially serpentinized mantle after SCS seafloor spreading. The thick oceanic crust may have subducted beneath the overriding wedge observed from the low anomalies of the free-air (?50 to ?20 mGal) and Bouguer (40–80 mGal) gravities across the deformation front.  相似文献   

17.
During the winter of 1990, two current-meter moorings were deployed in the outer shelf region across a canyon northeast of Taiwan. The data indicate that a steady flow exists in the southward, along-slope direction, opposite to the nearby northward-flowing Kuroshio current. Tides run transverse to the mean flow. Fluctuations in subtidal current mostly occur on the south side of the canyon, concentrated in the synoptic (2–4 days) band and oriented in the cross-slope direction. From the nearby winds and coastal sea-level observations, it is clear that the rotating-wind field associated with the passage of winter cold front is responsible for generating the observed energetic fluctuations. The northeasterly monsoon wind is very effective in piling up water against the northern coast of Taiwan and establishing an out-flowing geostrophic current. Trailing wind behind the high-pressure system has exactly the opposite effect. The investigation suggests that due to the winter-weather pattern, the area northeast of Taiwan is an important region for water exchange between the East China Sea and the Kuroshio.  相似文献   

18.
A regional correlation of Neogene stratigraphy has been attempted along and across the NW European Atlantic continental margin, between Mid-Norway and SW Ireland. Two unconformity-bounded successions are recognised. These are referred to as the lower and upper Neogene successions, and have been dated as Miocene–early Pliocene and early Pliocene–Holocene, respectively, in age. Their development is interpreted to reflect plate-wide, tectonically driven changes in the sedimentary, oceanographic and latterly climatic evolution of the NE Atlantic region. The lower Neogene succession mainly preserves a record of deep-water sedimentation that indicates an expansion of contourite sediment drifts above submarine unconformities, within this succession, on both sides of the eastern Greenland–Scotland Ridge from the mid-Miocene. This is interpreted to record enhanced deep-water exchange through the Faroe Conduit (deepest part of the Southern Gateway), and can be linked to compressive inversion of the Wyville–Thomson Ridge Complex. Thus, a pervasive, interconnected Arctic–North Atlantic deep-water circulation system is a Neogene phenomenon. The upper Neogene succession records a regional change, at about 4 Ma, in the patterns of contourite sedimentation (submarine erosion, new depocentres) coeval with the onset of rapid seaward-progradation of the continental margin by up to 100 km. This build-out of the shelf and slope is inferred to record a marked increase in sediment supply in response to uplift and tilting of the continental margin. Associated changes in deep-water circulation may be part of an Atlantic-wide reorganisation of ocean bottom currents. Glacial sediments form a major component of the prograding shelf margin (shelf-slope) sediment wedges, but stratigraphic data indicate that the onset of progradation pre-dates significant high-latitude glaciation by at least 1 Ma, and expansive Northern Hemisphere glaciation by at least 3 Ma.  相似文献   

19.
Field geological data of the Pantelleria Island, a large Late Quaternary volcano located in the Sicily Channel rift zone, integrated with offshore geophysical information, are used to derive the structural setting of the Island and the surrounding region, and to analyse the relationships between tectonics and magmatism. Field work shows that the principal faults exposed on the Island fall into two systems trending NNE–SSW and NW–SE. Mapped faults from offshore multichannel seismic profiles show similar trends, and some of them represent the offshore extension of the Pantelleria Island structures. The NW–SE faults bound the Pantelleria Graben, one of the three main depressions formed since the Late Miocene–Early Pliocene within the African continental platform, which compose the Sicily Channel rift zone. A 3-D Moho depth geometry, derived from inversion of Bouguer gravity data, shows a significant uplift of the discontinuity up to 16–17 km beneath the westernmost part of the Pantelleria Graben and beneath the Pantelleria Island; it lows rapidly to 24–25 km away from the graben north-eastward and south-westward. The Moho uplift could explain the presence of a shallow magma chamber in the southern part of the Island, where processes of magmatic differentiation are documented. Geological and geophysical data suggest that the northwestern part of the Sicily Channel is presently dominated by a roughly E–W directed extensional regime. Crustal cracking feeding the Quaternary volcanism could be also related to this extensional field that would be further responsible for the development of the N–S trending volcanic belt that extends in the Sicily Channel from Lampedusa Island to the Graham Bank. This mode of deformation is confirmed also by geodetic data. This implies that in the northwestern part of the Sicily Channel, the E–W extension replaced the NE–SW crustal stretching that originated the NW-trending tectonic depressions constituting the rift zone.  相似文献   

20.
This study examines the influence of a submarine canyon on the dispersal of sediments discharged by a nearby river and on the sediment movement on the inner shelf. The study area includes the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km seaward from the mouth of the Kao-ping River in southern Taiwan. Within the study area 143 surficial sediment samples were taken from the seafloor. Six hydrographic surveys along the axis of the submarine canyon were also conducted over the span of 1 yr. Three different approaches were used in the analysis of grain-size distribution pattern. They include (1) a combination of ‘filtering’ and the empirical orthogonal (eigen) function (EOF) analysis technique, (2) the McLaren Model, and (3) the ‘transport vector’ technique. The results of the three methods not only agree with one another, they also complement one another. This study reveals that the Kao-ping Submarine Canyon is relatively a stratified and statically stable environment. The hydrographic characteristics of the canyon display seasonal variability controlled primarily by the temperature field and the effluent of the Kao-ping River. The hydrographic condition and the bottom topography in the canyon suggest the propagation of internal tides during the flood season (summer) of the Kao-ping River. The submarine canyon acts as a trap and conduit for mud exchange between the Kao-ping River and offshore. Near the head of the canyon there is a region of sediment transport convergence. This region is also characterized by high mud abundance on the seafloor that coincides with the presence of high suspended sediment concentration (SSC) spots in the bottom nepheloid layer. Outside the submarine canyon on the shelf where the evidence of wave reworking is strong, the northwestward alongshore transport dominates over the southeastward transport, which is a common theme on the west coast in southern Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号