首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Ground motion amplifications in the Dinar basin, and contributions of the surface waves generated from basin edges are investigated in frequency and time domains. Amplification functions are computed from the aftershock data of the October 1, 1995 Dinar earthquake (MW=6.4) using the Standard Spectral Ratio method which requires a pair of instruments; one located at the site under investigation (generally on alluvium) and the other on a reference site, preferably a nearby rock site. First, a time window covering the whole signal is used to compute the amplification function, and, successively, the noise, P wave, S wave and the surface wave time windows are used in computation to observe their contributions to the amplification function. It is seen that the maximum amplifications observed at about 2.0 Hz on the amplification functions of the stations located in the basin are largely due to basin edge induced surface waves. These waves have significantly increased the duration of signals recorded within the basin. Particularly, on the vertical component records, the amplitudes of surface waves are larger than the S-wave amplitudes. The periods of waves amplified maximally due to the basin structure coincide with the natural periods of 4–6-story buildings which were heavily damaged in Dinar. This indicates that the site effects may have been important regarding the damage which occurred during the Dinar earthquake of October 1995.  相似文献   

2.
Seismic site amplification studies are generally used to assess the effects of local geology and soil conditions on ground motion characteristics. Although extensive reviews on site amplification phenomena associated with stratigraphic effects can be found in the specialized literature, it should be pointed out that most of the practical applications have been limited to the study of vertically propagating shear horizontal (SH) waves, i.e., to the 1-D soil amplification problem. Furthermore, little attention, if any, has been devoted to the study of the effects of non-vertically incident SH waves on surface accelerograms and on the earthquake response of structures. In the present work, the study is extended to an investigation of 2-D site amplification of non-vertically propagating seismic shear waves in multilayered viscoelastic soil deposits. Sensitivity analyses of the effects of non-vertical incidence on site amplification functions are performed based on site geotechnical data collected from post-seismic investigations of the 1980 El-Asnam earthquake. Analytical results are discussed in terms of seismic site transfer functions, spectral ratios, surface acceleration time histories, and structural response spectra for different values of wave incidence angle. Both bedrock and rock outcropping cases are examined.  相似文献   

3.
The Gubbio basin in Central Italy is a intermountain basin of extensional tectonic origin, typical of Central and Southern Apennines, characterized by moderate seismicity. The strongest recorded event within the area is a magnitude 5.7 earthquake which occurred on 29 April 1984 along the Gubbio fault, bordering the eastern side of the basin. The main objective of this study is to analyze the features of earthquake ground motion as related to basin-edge effects, by performing physics-based numerical simulations of the 1984 earthquake through a high-performance spectral element code. The simulated ground motions are found in reasonable agreement with the recorded motions when using the kinematic source model developed by Ameri et al. (Bull Seismol Soc Am 99:647–663, 2009), with a rise-time equal to 1 s and a nucleation point located in the middle of the fault. Pronounced differences were noted between records from the basin and adjacent sites at outcropping bedrock, owing to both the strong impedance contrast between soft alluvial sites and bedrock formations (lithostratigraphic amplification), as well as lateral discontinuities related to the 2D/3D geometry of the basin (generation of surface waves). Since the fault was located beneath the basin, 1D amplification effects were found to be more relevant than those associated with the generation of surface waves from the basin edge. Finally, an envelope delay spectrum was computed for the simulated ground motions, showing that surface waves are excited in the frequency band of 0.2–0.8 Hz with a significant increase of ground motion duration within the basin.  相似文献   

4.
In order to determine the effect of geometry on the ground response of 2-dimensional (2-D) basins filled with soils that can develop nonlinear response, we use three basin models with width/depth ratios 3, 6 and 10. The three basins are subjected to a suite of rock site records with various magnitudes and source distances. We compute response spectral amplification ratios at four locations on the surface of the 2-D basins, and determine the average variation of the amplification ratios with respect to excitation spectra, for peak ground acceleration (PGA) and 3 spectral periods of 0.2, 0.5, 1 s. Similarly, we compute the average response spectral amplification ratios for two 1-dimensional (1-D) nonlinear models, one having the soil profile at the basin centre and the other having a soil profile at half the depth of the basin. From the relationship between the average amplification ratios and excitation spectra, we determine the cross-over point in terms of excitation spectral values that separate the amplification range from the deamplification range. Our results show that the cross-over point varies significantly from one location to another on the ground surface and from one basin to another, in a range of 0.3–1.1g for PGA. The effects of basin geometry are very strong at weak and moderate excitation, but decrease with increasing excitation spectra in a significant portion around the basin centre. Our results provide some justification for using 1-D models for 2-D basins with a width/depth ratio ?6 if the soil site is subjected to strong ground shaking.  相似文献   

5.
刘中宪  尚策  王小燕  王冬 《地震学报》2017,39(1):111-131
基于一种高精度间接边界元法(IBEM), 实现了沉积盆地三维地震响应的频域、 时域精细求解, 并以半空间中椭球形沉积盆地对平面P波和SV波的散射为例, 着重探讨了入射角度、 入射波型、 入射频率、 盆地长宽比和深宽比对沉积盆地地震动放大效应的影响规律. 结果表明: 盆地形状对地震波的放大效应和空间分布状态具有显著影响, 且具体规律受控于入射波频段. ① 随着盆地深度增大, 盆地边缘面波发育更为充分, 在较宽频段内均会出现显著的地震动放大效应, 且深盆地的放大区域集中于盆地中部. ② 圆形盆地对地震波的汇聚效应最为显著, 而狭长盆地对地震波的汇聚作用相对较弱, 高频情况下可在盆地内部形成多个聚焦区域. ③ 不同波型入射下, 盆地对地震动放大效应的机制有所差异: P波入射下, 竖向位移放大主要是由于盆地边缘面波由四周向中部汇聚所致; SV波入射下, 边缘面波汇聚效应相对较弱, 而当盆地较深时, 底部透射体波和边缘面波易形成同相干涉从而显著放大地震动. 按盆地内外介质波速比为1/2, P波和SV波垂直入射下频域最大放大倍数分别为25和15, 时域放大倍数约为4.0和3.7(雷克子波). ④ 低频波入射下, 位移从盆地中部向边缘逐渐减小, 且浅层沉积盆地对地表位移幅值的放大作用不明显. ⑤ P波和SV波的入射角度对盆地地震动放大幅值及空间分布特征也具有显著影响.   相似文献   

6.
7.
现有场地对地震动的放大作用分析中,常采用观测得到正交方向的HVSR和SBSR的矢量合成结果表征场地放大作用,而不考虑放大作用的方向相关性。为研究不同地震作用下场地放大作用的方向相关性,采用多向HVSR和多向SBSR及谱比峰值方向相关分布概率,以11次地震事件获得的地表、井下基岩记录作为数据,开展响嘡场地效应台阵场地对地震动放大作用的方向相关性分析。研究结果表明,常用的矢量合成法分析结果与多向谱比上包络曲线法分析结果存在差异,前者存在忽略部分峰值的可能;多向谱比的极坐标等高线图可较直观地体现场地对地震动放大作用的方向相关性特征,但不同多向谱比表现存在差异;多向谱比峰值方向分布概率可较好地定量分析放大作用峰值在不同方向上的差异,但不同地震事件存在差异,不同的多向谱比存在差异。可采用多向谱比上包络曲线法分析场地放大作用,除可避免矢量合成法引起的误估外,也可更好地分析实际场地频率-方向相关的放大作用。  相似文献   

8.
The strong motion of a small long and narrow basin caused by a moderate scenario earthquake is simulated by using the spectral-element method and the parallel computing technique.A total of five different geometrical profiles within the basin are used to analyze the generation and propagation of surface waves and their relation to the basin structures in both the time and frequency domain.The amplification effects are analyzed by the distribution of peak ground velocity(PGV)and cumulative kinetic energy(Ek) in the basin.The results show that in the 3D basin,the excitation of the fundamental and higher surface wave modes are similar to that of the 2D model.Small bowls in the basin have great influence on the amplification and distribution of strong ground motion,due to their lateral resonances when the wavelengths of the lateral surface waves are comparable to the size of the bowls.Obvious basin edge effects can be seen at the basin edge closer to the source for constructive interference between direct body waves and the basin-induced surface waves.The Ek distribution maps show very large values in small bowls and some corners in the basin due to the interference of waves propagating in different directions.A high impedance contrast model can excite more surface wave modes,resulting in longer shaking durations as well as more complex seismograms and PGV and Ek distributions.  相似文献   

9.
The basin edge effect, i.e., the interference of the direct S wave with the surface wave diffracted off the basin edge has been invoked by many authors to explain the damage distribution during the January 17, 1995 Hyogo-Ken Nanbu (Kobe) earthquake. Here we present the results of numerical experiments obtained with the spectral element method in 2-D geometry. Our results confirm that the amplification of horizontal motion close to the basin edge can be twice as large as the one measured in the center of the basin. This additional amplification is shown to depend strongly on the edge geometry and on frequency, due to physical dispersion of diffracted surface waves. In particular we obtain maximal amplification around 3 Hz, at frequencies critical for buildings.  相似文献   

10.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

11.
采用等效线性动粘弹性模型描述土的动力非线性特性,基于一维等效线性波传法,对泉州盆地地震效应进行了分析;同时,采用修正Martin-Seed-Davidenkov动粘弹塑性模型描述土的动力非线性特性,对泉州盆地非线性地震效应进行了大尺度二维精细化有限元分析,研究了地形地貌和土层横向不均匀性对地震效应的影响。将两种分析结果进行对比,结果表明:①随着基岩输入地震动强度增大,地表峰值加速度PGA放大效应总体呈现减小趋势,中震与小震、大震与小震的地表PGA放大系数之比依次为0.83~0.99、0.72~0.97;②该盆地Ⅲ类场地处,基岩、地表起伏不大,且土层横向分布较均匀,两种方法计算得到的地震效应特征类似;基岩或地表起伏剧烈、土层横向分布明显不均匀的Ⅱ类场地上,二维非线性分析给出的地表PGA放大系数明显大于一维等效线性结果,两种方法得到的地表加速度反应谱及PGA随土层深度的变化特征存在显著差异,二维非线性分析给出的地表加速度反应谱大多呈现双峰甚至多峰现象,且PGA在土层特定深度处存在聚集效应,使PGA随土层深度的变化呈现非单调性。  相似文献   

12.
The effect of placing barriers in the travel path of P, SV and SH seismic waves has been studied using time-domain solutions of plane-strain finite element programs for two-dimensional crustal models. The wavefields considered propagate parallel to the free surface of an elastic medium consisting of a single layer over a halfspace. Barriers take the form of open-air trenches. Effects of damping are assessed by considering representative viscoelastic conditions. Computations are presented as the ratio of spectral energy observed at a point with the barrier system in place in the model to the spectral energy observed at the same point without the barrier system in the model. These spectral ratios are dependent upon the direction of wave propagation. The calculations brought to light the marked role of surficial layering and attenuation properties of the surface rocks or soils on the effectiveness of seismic trench barriers. Barrier models without these features cannot in general reliably predict seismic wavefields at the surface. In the range of cases studied, trench depth d rather than width is the most sensitive parameter. When the ratio d/λ, the ratio of trench depth to the wavelength of shear waves, is greater than about 0·6, power spectral ratios of 0·06 and less are found for SH waves and the vertical component of SV motion for frequencies of 4–6 Hz. By contrast, for frequencies less than 3–4 Hz, power spectral ratios from unity to about two and greater are observed, indicating amplification for the horizontal component of wave motion. Spectral ratios calculated at some locations in front of the barrier system show over two-fold amplification. Spectral ratios also change significantly with the relative location of the free surface observation point.  相似文献   

13.
This study assesses the 3D amplification effects in shallow basins and quantifies the effects of site‐city interaction (SCI) on high‐rise buildings. A regional‐scale 3D spectral element simulation is conducted on the Tuen Mun‐Yuen Long basin, which contains multiple subbasins with heterogeneous and nonlinear soil profiles, while 3D city models with various building layouts are fully integrated into the basin model for our SCI study. We found a good correlation between spectral amplification factors and soil depths. Site response is significantly amplified at basin edges and centers due to surface waves generated at basin edges and the focusing effects stemming from 3D basin geometry. Transfer functions of 3D basins can be up to fourfold at fundamental frequencies as compared to 1D response, and further amplifications occur at high frequencies due to surface waves. In the SCI simulations, we observe wave trapping in the open space amid buildings resulting in energy concentration and up to twofold PGA amplifications. The wave trapping effect diminishes as the space between buildings increase beyond their range of influence (~100 m). The SCI analyses show that destructive kinetic energy in superstructures increases 28% in one horizontal direction but decreases 22% in the other. Our study concluded that, 1D site response analysis can significantly underestimate the seismic demand in shallow basins. Site‐city interaction of high‐rise buildings increases the short‐period spectra of ground motions, leading to an increase in their story accelerations by up to 50% and to a substantial decrease in the seismic safety of short structures in their vicinity.  相似文献   

14.
Approximately 4000 people were killed due to collapse of buildings in downtown Adapazari during the 1999 Izmit, Turkey earthquake (Mw = 7.4). The downtown is located on a deep sedimentary basin, so-called Adapazari basin. We study site effects of the Adapazari basin based on strong- and weak-motion data obtained by a temporary array observation deployed in and around the Adapazari basin after the earthquake. Four moderate-size aftershocks (M4.6–M5.8) are selected in our study. We evaluate the S-wave amplifications in the basin by using the traditional spectral ratio method. The spectral ratios show that the S waves are considerably amplified in the frequency range of 0.5 to about 5 Hz at the basin sites, but are apparently de-amplified at frequencies higher than about 10 Hz. We make a quantitative interpretation of the empirical amplifications based on the S-wave velocity structures at the stiff-soil reference site as well as at the basin sites; these structures were estimated by the microtremor array measurements. Through the interpretation, we confirm that the amplifications at low frequencies are attributed to the thick sedimentary layers in the Adapazari basin and that the apparent de-amplifications at high frequencies are partly due to the reference site response. In addition to the considerable S-wave amplifications, the basin site records show long-period (about 2 sec) later phases after the S-wave arrival; these later phases are basin-transduced surface waves that are originated from the source and transmitted into the basin. The predominant period of these waves apparently depends on the earthquake magnitude. We conclude that heavy damage in downtown Adapazari during the 1999 Izmit earthquake was caused not only by strongly amplified S-waves but also by long-period basin surface waves of long duration.  相似文献   

15.
This paper investigates the effects of random variations of soil properties on site amplification of seismic waves. First, based on attenuation laws and the filtered Tajimi–Kanai spectrum, seismic motion at the base rock of a soil site is stochastically generated according to an assumed earthquake with a given magnitude and epicentral distance. Motions on the surface of this layered random soil site are calculated by nonlinear wave propagation methods, and by assuming the incoming seismic wave consisting of SH wave or combined P and SV waves. Soil properties, including shear modulus, damping ratio and mass density, as well as ground water level are considered as random in the numerical calculation. The Rosenblueth method is used to solve the random dynamic responses of the soil site. Parametric calculations are performed to investigate the effects of various parameters on site amplification of seismic waves. The mean and maximum ground motions on surface of the site are estimated. Numerical results indicate that the estimated surface motions differ substantially if the random variations of soil properties and soil saturation level are taken into consideration in the analysis.  相似文献   

16.
In M S7.0 Lushan earthquake, a large amount of strong ground motion recordings were collected. In this paper, we analyze the recordings carefully. The abnormality of ground motion recordings is identified through a log linear regression. In the station of 51BXD, the PGA value has exceeded 1 g, which is the biggest peak ground acceleration (PGA) value obtained from all recordings in this earthquake. The log linear relation shows the PGA value in this station is abnormally large. As this station is located on the footage of a hill, the topographic amplification factor is explored in order to explain this abnormality. Through 3D numerical modeling using spectral element method with transmitting boundary conditions, the amplification factor is quantized. In this station, the topographic amplification is highly polarized in the direction of East–West which agrees with the empirical recordings. This research result suggests us in future directionality of topographic amplification should be considered in the aseismic design.  相似文献   

17.
2008年11月10日在青海柴达木盆地北缘发生了大柴旦M_W6.3地震,为了研究该地震的区域地震波传播与地面运动特征,本文利用地质资料和地壳速度结构研究成果,构建了柴达木盆地及周边区域三维传播介质模型,采用有限差分方法模拟了大柴旦地震波场传播过程以及地面运动分布特征.结果表明,柴达木盆地对波场传播有明显影响,表现为地震波传入盆地后在边界产生次生面波,盆地沉积物对地震波具有围陷作用,地震地面运动在盆地内振幅增大、持时延长.模拟结果给出的地震地面运动峰值速度分布以及理论地震图均和观测结果符合较好,反映数值模拟较好地给出了观测地面运动的主要特征以及传播介质模型的合理性.  相似文献   

18.
In this work we studied the performance of different numerical approaches to simulate the large amplifications of long period earthquake ground motion within the Gubbio plain, a closed-shape intra-mountain alluvial basin of extensional tectonic origin in Central Italy, observed during the Umbria-Marche 1997 seismic sequence. Particularly, referring to the Sep 26 1997 Mw6.0 mainshock, we considered the following numerical approximations: (a) 3D model, including a kinematic model of the extended seismic source, a layered crustal structure, and the basin itself with a simplified homogeneous velocity profile; (b) 2D model of a longitudinal and transversal cross-section of the basin, subject to vertical and oblique incidence of plane waves with time dependence at bedrock obtained by the 3D simulations; (c) 1D model. 3D and 2D numerical simulations were carried out using the spectral element code GeoELSE, exploiting in 3D its implementation in parallel computer architectures. 3D numerical simulations were successful to predict the observed large amplification of ground motion at periods beyond about 1 s, due to the prominent onset of surface waves originated at the southern edge of the basin and propagating northwards. More specifically, the difference of 3D vs 2D results is remarkable, since the latter ones fail to approach such large amplification levels, even when an oblique incidence of plane waves is considered.  相似文献   

19.
This research studies the impact of the incident angle of SH waves on the seismic response of two-dimensional sedimentary basins by using a nonlinear method. At first Ricker wavelet is input for a detailed analysis, followed by a statistical analysis based on a total of 100 real earthquake motions recorded at rock sites. The results show that the incident angle has a significant implication on the basin ground motion. First, the incident angle affects the short-period components more than the long-period ones of the spectral response acceleration, but the dominant period of the spectral response acceleration is insensitive to incident angle and location. Second, the MDIA of a basin is not necessarily 0° (vertical incidence) but in the range of approximately 0°–30°, and hence due attention should be paid to the influence of incident angle in seismic response analysis. Third, basin central areas are seismically preferable to edge regions for short-period buildings located on the basin, while, for long-period buildings, the edge areas become preferable. However, with the increase in incident angle, the difference between edge and central areas diminishes gradually. Finally, given that the dimensions of a basin are perceivable to incidence waves, the slope angle has a considerable impact on the PGA distribution pattern by controlling whether or not peak appears in the edge area. The MDP is most likely to be in the edge area of a basin with small slope angle when subjected to excitation with small incident angle (including vertical incidence).  相似文献   

20.
罗诚  谢俊举  温增平 《地震学报》2018,40(1):108-120
选取日本熊本MW7.0地震断层距小于200 km的82个近场KiK-net台站记录到的三分量记录数据进行基线校正后,获得近场地面运动水平向的峰值加速度PGA、峰值速度PGV及周期为0.2,1,2,3,5和10 s的加速度反应谱数据,并与美国NGA-West2的地震动预测模型相比较,研究熊本地震地表和井下地震动峰值及反应谱的衰减特征,通过比较KiK-net台站地表与井下记录结果,探讨浅层场地放大效应的影响。研究结果表明:① 对于井下观测结果,NGA-West2的地震动模型对PGA和短周期0.2 s的反应谱的预测值与井下观测值相比整体偏高,而PGV和较长周期地震动(如1,2和3 s的反应谱)的预测值与井下观测值较为吻合;② 地表观测记录的PGA,PGV和周期为0.2—3 s的反应谱残差整体上随vS30对数值的增大呈线性减小的趋势,而周期为5 s和10 s的长周期部分,其场地效应的影响很小;③ 相对于井下记录,地表记录的地震动PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大,这种放大作用随浅层场地剪切波速的增大而减小;周期为3,5和10 s时长周期地震动的放大效应很小。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号