首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Self-centering buckling-restrained braces (SCBRBs) were proposed recently to minimize residual deformation of the braces induced by yielding or buckling. Although earthquake resilience of structures equipped with the SCBRBs can be well achieved using displacement based designs (DBDs), previously proposed DBD procedures generally involve iterations. In this study, a novel direct displacement-based design method with a non-iterative procedure, named RCR DDBD, is proposed and applied to design of steel braced frame structures with SCBRBs. Unlike previously adopted DBD, the yield displacement does not need to be assumed initially in the proposed procedure. Instead, the yield strength and yield displacement are determined directly by the predetermined objective drift (ratio), using the relation of the strength reduction factor (R) and constant-strength inelastic displacement ratio spectra (CR spectra), i.e. the RCR relation. Since the derived RCR relation is independent with the peak ground acceleration of the earthquake records when stiffness and strength degradation are not considered, the proposed procedure can be accurate for any seismic level. The RCR DDBD is supposed to begin with the knowledge of the seismic excitation level (according to the structure category, site classification and owner’s requirements) and the corresponding target drift; the end of the design is to obtain the cross sections of main frame members and all the bracing parameters. The result of two 7-story buildings designed according to the RCR DDBD procedure demonstrates that this procedure can be effective and fairly simple for practical seismic design.  相似文献   

2.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

3.
We analyzed the most relevant seismic sequences that occurred from 1977 to 2007 in the Friuli-Venezia Giulia region (northeastern Italy) and western Slovenia. The eight aftershock sequences were triggered by low- to moderate-magnitude earthquakes with mainshock duration magnitude ranging from 3.7 to 5.6. The b-value of the Gutenberg–Richter law varies from 0.8 to 1.1. The modified Omori’s modeling of the sequences evidences values of the p exponent ranging from 0.8 to 1.0. Using the Reasenberg and Jones (Science 243:1173–1176, 1989; Science 265:1251–1252, 1994) approach, we computed the probabilistic estimate of the aftershock rates and the largest aftershock in given time intervals. The difference in magnitude between the mainshock and the largest aftershock is calculated according to the modified Båth law and using an approach that considers the partitioning of the radiated seismic energy between mainshock and aftershocks. The partitioning of the radiated seismic energy appears to play a significant role in the evolution of the sequences. We define the parameter R ES as the ratio between the radiated seismic energy of the mainshock and the summation of the seismic energy radiated by the aftershocks. The difference in magnitude between the mainshock and the largest aftershock, calculated with the parameter R ES, agrees well with the observed difference. In most sequences, the parameter R ES decreases very quickly until the occurrence of the largest aftershock and then becomes constant. By analyzing the values of R ES during the early hours following the mainshock, we found that the R ES values after 24 h are well related to the final ones, calculated on the whole sequence, and to the differences in magnitude between the mainshock and the largest aftershock.  相似文献   

4.
During the ruptures of an earthquake,the strain energy.△E,.will be transferred into,at least,three parts,i.e..the seismic radiation energy(E_s),fracture energy(E_g),and frictional energy(E_f),that is,△E = E_s + E_g + E_f.Friction,which is represented by a velocity- and state-dependent friction law by some researchers,controls the three parts.One of the main parameters of the law is the characteristic slip displacement.D_c.It is significant and necessary to evaluate the reliable value of D_c from observed and inverted seismic data.Since D_c controls the radiation efficiency.η_R = E_s/(E_s+ E_g),the value of η_r is a good constraint of estimating D_c.Integrating observed data and inverted results of source parameters from recorded seismograms.the values of E_s and E_g of an earthquake can be measured,thus leading to the value of η_R.The constraint used to estimate the reliable value of D_c will be described in this work.An example of estimates of D_c.based on the observed and inverted values of source parameters of the September 20,1999 M_S 7.6 Chi-Chi(Ji-Ji).Taiwan region,earthquake will be presented.  相似文献   

5.
An advanced method for estimating the earthquake grouping parameters Rcr and Tcr is proposed in order to identify interrelated seismic events. The method pursues continuity with the previous algorithm suggested in (Mirzoev, 1980; 1988a; 1988b; 1992; Mirzoev and Azizova, 1983; 1984) but uses a more realistic spatial model of the background seismicity. All the calculations in the method can be fully formalized and a preliminary expert estimation of the parameters is not required. The method provides stable estimates of the critical radius Rcr and time Tcr of grouping. Group earthquakes make up 50 to 75% of their total number.  相似文献   

6.
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.  相似文献   

7.
Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the same application is defi ned for it. An analytical study of the seismic responses of several reinforced concrete frames subjected to a suite of earthquake records performed in this research indicate that the stories’ overstrength and stiffness distribution along the structural height can affect local defl ections more than global ones. Therefore, the Cd/R ratio is calculated based on the ratio of both maximum inelastic to maximum elastic displacements and interstory drifts. Due to damage concentration in some specifi c stories, the defl ection amplifi cation factor calculated based on inelastic interstory drifts was larger than that of the inelastic displacements. Consequently, a minimum value of 1.0 is recommended for the Cd/R ratio in order to estimate maximum inelastic drifts. The ratio of inelastic to elastic displacement was generally found to increase slightly along the structural height for the studied RC models. In addition, it was detected that the story damage indices of the studied RC frames decrease when the inverted value of inelastic interstory drift ratios are increased through a(negative) power form.  相似文献   

8.
Seismic intensity measures (IMs) perform a pivotal role in probabilistic seismic demand modeling. Many studies investigated appropriate IMs for structures without considering soil liquefaction potential. In particular, optimal IMs for probabilistic seismic demand modeling of bridges in liquefied and laterally spreading ground are not comprehensively studied. In this paper, a coupled-bridge-soil-foundation model is adopted to perform an in-depth investigation of optimal IMs among 26 IMs found in the literature. Uncertainties in structural and geotechnical material properties and geometric parameters of bridges are considered in the model to produce comprehensive scenarios. Metrics such as efficiency, practicality, proficiency, sufficiency and hazard computability are assessed for different demand parameters. Moreover, an information theory based approach is adopted to evaluate the relative sufficiency among the studied IMs. Results indicate the superiority of velocity-related IMs compared to acceleration, displacement and time-related ones. In particular, Housner spectrum intensity (HI), spectral acceleration at 2.0 s (S a-20), peak ground velocity (PGV), cumulative absolute velocity (CAV) and its modified version (CAV 5) are the optimal IMs. Conversely, Arias intensity (I a ) and shaking intensity rate (SIR) which are measures often used in liquefaction evaluation or related structural demand assessment demonstrate very low correlations with the demand parameters. Besides, the geometric parameters do not evidently affect the choice of optimal IMs. In addition, the information theory based sufficiency ranking of IMs shows an identical result to that with the correlation measure based on coefficient of determination (R 2). This means that R 2 can be used to preliminarily assess the relative sufficiency of IMs.  相似文献   

9.
Statistical tests have been used to adjust the Zemmouri seismic data using a distribution function. The Pareto law has been used and the probabilities of various expected earthquakes were computed. A mathematical expression giving the quantiles was established. The extreme values limiting law confirmed the accuracy of the adjustment method. Using the moment magnitude scale, a probabilistic model was made to predict the occurrences of strong earthquakes. The seismic structure has been characterized by the slope of the recurrence plot γ, fractal dimension D, concentration parameter Ksr, Hurst exponents Hr and Ht. The values of D, γ, Ksr, Hr, and Ht diminished many months before the principal seismic shock (M = 6.9) of the studied seismoactive zone has occurred. Three stages of the deformation of the geophysical medium are manifested in the variation of the coefficient G% of the clustering of minor seismic events.  相似文献   

10.
Based on the theory of two-phase interacting nanoparticles, the formation of thermoremanent and chemical remanent magnetization in nanosized titanomagnetites is modeled. It is shown that the value of thermoremanent magnetization barely depends on the degree of titanomagnetite exsolution whereas, chemical remanent magnetization which emerges during the exsolution increases up to at most the value of thermoremanent magnetization. The values of the ratio of thermoremanent to ideal magnetization, R t , fall within the limits 0.8 ≤ R t ≤ 1. The analogous ratio of chemical remanent magnetization to the ideal R c are below R t at all stages of the exsolution. Besides, the magnetic interaction between the nanoparticles reduces the values of thermoremanent and chemical magnetization but barely affects the ratio.  相似文献   

11.
Based on a pseudo-static approach, finite difference (FDM) numerical analyses have been performed aimed at evaluating the seismic effects on the ultimate bearing capacity of shallow strip foundations. In the specialised literature, such seismic effects are usually divided in two components, namely, a structure inertia and a soil inertia, which can be either considered together, or separately addressed and then superposed. Both of these inertia effects are investigated in this work. The results of a comprehensive numerical study are presented in—and critically compared to—the wide framework of available analytical solutions proposed in the literature in the last 30 years. The good agreement found between the numerical and the analytical approaches is pointed out, thus providing further evidence of the reliability of some available and widespread solutions. The possibility of superposition of the two inertia effects is investigated. It is found that in some cases the soil inertia may play a significant role in the seismic capacity of the system, and that simple one-constant equations can be readily used in foundation design to estimate the reduction in bearing capacity (namely, factors e i , e k ) deriving from the two inertia effects.  相似文献   

12.
Three 1/3-scale precast segmental bridge columns, manufactured with ultrahigh-performance fiber-reinforced concrete (UHPFRC) incorporating river sand and coarse aggregate, were tested under cyclic loading. Energy dissipation (ED) bars, embedded in ultrahigh-performance concrete (UHPC) grout, maintained continuous across segment joints and unbonded at the bottom joint. Self-centering prestressing force was provided by unbonded posttensioning (PT) tendons. The research parameters included PT force level and the amount of ED bars. Test results showed that all the specimens exhibited no less than 8% drift capacities, which were remarked with the first fracture of ED bars. No obvious cracking and limited UHPFRC spalling were observed. Both PT force level and the amount of ED bars have notable effects on stiffness, lateral strength, and ductility. Increased PT force may improve ductility with the total axial loading ratio less than 0.08. All PT tendons were elastic and no yield or rupturing was found, but the stress loss was significant. The equivalent unbonded length can be evaluated with 0.007dbfy for ED bars embedded in UHPC grout. The rotation of the bottom joint dominated lateral deformation and the contribution of joint sliding can be neglected. The contribution λED of ED bars to lateral strength should be no more than 25% to maintain self-centering capacity.  相似文献   

13.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003–2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (F GEP) and ecosystem respiration (R eco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting F GEP and R eco in 2003, whereas soil moisture imposed a significant influence on both R eco and F GEP in 2004. Under wet conditions, R eco showed an exponentially increasing trend with temperature (Q 10 = 2.0), but an apparent reduction in the value of R eco and its temperature sensitivity were observed during the periods of water stress (Q 10=1.6). Both heat and water stress can cause decrease in F GEP. The seasonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m?2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

14.
The seismic performance of bridges depends on the ductile behavior of its column, as the deck and other substructural components except pile foundations are normally designed to be elastic to facilitate bridge retrofitting.Codes such as AASHTO, Caltrans, IRC: 112 etc.give guidelines for the seismic performance enhancement of columns through ductile detailing.In the present study, a methodology for the seismic performance enhancement of bridges is discussed by using a "Parameter-Based Influence Factor"(PIF) developed from factorial analysis.The parameters considered in the factorial analysis are: percentage of longitudinal reinforcement(P_t), compressive strength of concrete(f'_c), yield strength of steel(f_y), spacing of lateral ties(S) and column height(H).The influence of each parameter and their combination on the limit states considered is estimated.Pushover analysis is used to evaluate the capacity of columns, considering shear failure criteria.A total of 243(3~5 combinations) analysis results are compiled to develop ‘PIF’ used in the performance enhancement process.The study also encompasses other sub-objectives such as evaluating the discrepancies in using the Importance Factor(I) in designing bridges of varied functional importance; and estimating the aspect ratio and slenderness ratio values of bridge columns for its initial sizing.  相似文献   

15.
The study of the Gutenberg-Richter (GR) parameters a and b has been very important to describe and characterize the seismicity over the different seismic provinces around the world. As far as we know, the possible correlation between the GR parameters a and b has not received enough attention. Bayrak et al. reported the a and b values for 27 active seismic regions around the boundaries of the main tectonic plates of the world. From these data, we found that there exists a positive correlation between the a and b parameters (R =?0.85, R2 =?0.72). On the other hand, we made around 150 computer runs of a spring-block model proposed by Olami et al. (Phys Rev Lett 68(8):1244–1247, 1992). This model roughly emulates the interaction between two fault planes and it reaches a self-organized critical state. With these simulations, we also found that the a and b parameters are positively correlated. Motivated by these results, we propose an analytical demonstration that indeed a and b are positively correlated. In addition, we discuss on other possible applications of the spring-block model to actual seismicity and to frictional experiments made with sandpapers.  相似文献   

16.
The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.  相似文献   

17.
Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) By, remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20RE>X>-50RE). In addition, the effects of the IMF By on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF By increases. Moreover, positive IMF By has a greater effect than negative IMF By on flaring angle. These results provide a reference for bow shock modeling that includes the IMF By.  相似文献   

18.
Nonlinear response history analyses and use of strong ground motion data including near-field effects has become a common practice in both performance based design of tall buildings and design of base-isolated buildings. On the other hand, ordinary buildings are commonly analysed via response spectrum analysis following the rules of conventional seismic codes, most of which do not take near-field effects into account. This study evaluates the necessity and the adequacy of near-source factors for ordinary fixed-base buildings that are not specifically classified as tall, by comparing dynamic responses of 3, 8, and 15-story benchmark buildings obtained via(1) linear time history analyses using 220 record components from 13 historical earthquakes and 45 synthetic earthquake records of different magnitudes and fault distances and(2) response spectrum analyses in accordance with the Turkish Earthquake Code 2007-representing seismic codes not taking near-field effects into account- and the Uniform Building Code 1997 which takes near-field effects into account via near-source factors that amplify design response spectrum. It is shown that near-source factors are crucial for the safe design of not-so-tall ordinary fixed-base buildings but those defined in UBC97 may still not be adequate for those located in the vicinity of the fault.  相似文献   

19.
The Q-factor estimates of the Earth’s crust and upper mantle as the functions of frequency (Q(f)) are obtained for the seismic S-waves at frequencies up to ~35 Hz. The estimates are based on the data for ~40 earthquakes recorded by the Kislovodsk seismic station since 2000. The magnitudes of these events are MW > 3.8, the sources are located in the depth interval from 1 to 165 km, and the epicentral distances range from ~100 to 300 km. The Q-factor estimates are obtained by the methods developed by Aki and Rautian et al., which employ the suppression of the effects of the source radiation spectrum and local site responses in the S-wave spectra by the coda waves measured at a fixed lapse time (time from the first arrival). The radiation pattern effects are cancelled by averaging over many events whose sources are distributed in a wide azimuthal sector centered at the receiving site. The geometrical spreading was specified in the form of a piecewise-continuous function of distance which behaves as 1/R at the distances from 1 to 50 km from the source, has a plateau at 1/50 in the interval from 50–70 km to 130–150 km, and decays as \({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {\sqrt R }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\sqrt R }$}}\) beyond 130–150 km. For this geometrical spreading model and some of its modifications, the following Q-factor estimates are obtained: Q(f) ~ 85f0.9 at the frequencies ranging from ~1 to 20 Hz and Q(f) ~ 75f1.0 at the frequencies ranging from ~1 to 35 Hz.  相似文献   

20.
In this study, two different historical structures built in Trabzon have been processed by ambient vibrations and seismic refraction measurements. One of the investigated historical structures is the Atatürk Pavilion built in the nineteenth century, and the other one is Hagia Sophia which was built in the thirteenth century. These two buildings are among the most important historical buildings in Trabzon and are very important for the tourism of the city. In order to determine peak/s frequency and amplitude from the horizontal-to-vertical spectral ratios (HVSRs), we have performed several measurements of ambient vibrations both inside (at different floors) and outside (on the ground) of structures. We have also conducted seismic prospecting to evaluate the vertical 1D and 2D profile of longitudinal and shear seismic waves, Vp and Vs, respectively. To this purpose, we have performed seismic refraction tomography and MASW. Ambient vibrations and seismic measurements were compared with each other. The results show that average predominant frequencies and HVSR amplitudes of inside and outside of Atatürk Pavilion are 4.0 Hz, 7.8 Hz and 2.6, 2.3, respectively. The Vp values vary from 300 to 2070 m/s, and the Vs for maximum effective depth is up to 790 m/s in Atatürk Pavilion. On the other hand, average predominant frequencies and HVSR amplitudes of inside and outside of Hagia Sophia and its tower are 4.7, 4.4 and 2.4 Hz and 1.6, 1.8 and 6.9, respectively. Vp values range from 450 to 2200 m/s, and Vs for maximum effective depth is also up to 1000 m/s in Hagia Sophia. The frequency values (F0?=?Vs/4 h) calculated from the velocities up to the maximum effective depth for Atatürk Pavilion are in good agreement with the predominant frequency values determined from ambient vibrations. Atatürk Pavilion and Hagia Sophia soils have been classed according to Eurocode 8 by using VS30 values. The class was defined as “B.” Moreover, the bedrock in studied area is basalt. The high Vp and Vs values are also compatible with the lithology. The HVSR curves measured at the Hagia Sophia show the presence of clear peaks when compared to the Atatürk Pavilion. At the same time, there are marked velocity changes in the Vs sections calculated in both areas. As a result, in both areas there are significant impedance contrasts in the subsoil. However, this impedance contrast is more evident in Hagia Sophia. This could be also compatible with a lithological transition. The possible soil–structure interaction was investigated by using all the results and evaluated in terms of resonance risk. It is thought that the probability of resonance risk at Atatürk Pavilion is low according to the ambient vibrations measurements. However, resonance risk should be taken into consideration at Hagia Sophia site since the predominant frequency values are very close to each other. Finally, this site should be investigated in detail and necessary precautions should be taken against the risk of resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号