首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Vestfold Block, like other Archaean cratons in East Antarctica and elsewhere, consists predominantly of felsic orthogneiss (Mossel and Crooked Lake gneisses), with subordinate mafic granulite (Tryne metavolcanics) and paragneiss (Chelnok supracrustals). Two major periods of continental crust formation are represented. The Mossel gneiss (metamorphosed about 3,000 Ma ago) is mainly of tonalitic composition, and is similar to much of the roughly coeval Napier Complex in Enderby Land. The Crooked Lake gneiss was emplaced under high-grade conditions about 2,450 Ma ago and comprises a high proportion of more potassic rocks (monzodioritic and monzonitic suites), as well as tonalite and minor gabbro and diorite. Both Mossel and Crooked Lake gneisses are depleted in Y and have moderate to high Sr, Ce/Y, and Ti/Y, consistent with melting of a mafic source (?subducted hydrated oceanic crust) leaving major residual hornblende (± garnet). Most Crooked Lake gneisses are more enriched in incompatible elements (P, Sr, La, Ce, and particularly Rb, Ba, and K) than Mossel gneisses, suggesting derivation from a more enriched mafic source. The Vestfold Block contains few orthogneisses derived by melting of older felsic crustal rocks, in marked contrast to the Archaean Napier Complex and, in particular, southern Prince Charles Mountains. Both Mossel and Crooked Lake tonalites are strongly depleted in Rb, K, Th, and U, and have very low Rb/Sr and high K/Rb; more potassic orthogneisses are depleted in Th, U, and, to lesser extents, Rb. Tryne metavolcanics are depleted in Th and Rb, but appear to have been enriched in K (and probably Na), possibly during early low-grade alteration.  相似文献   

2.
Preliminary isotopic data for Late Proterozoic (~ 1100 Ma) granulite-facies metamorphics of the Prydz Bay coast indicate only very minor reworking (i.e., remetamorphism) of Archaean continental crustal rocks. Only two orthopyroxene—quartz—feldspar gneisses from the Rauer Group of islands, immediately adjacent to the Archaean Vestfold Block, show evidence for an Early Archaean origin (~ 3700—3800 Ma), whereas the vast majority of samples have Middle Proterozoic crustal formation ages (~ 1600–1800 Ma). The Prydz Bay rocks consist largely of garnet-bearing felsic gneisses and interlayered aluminous metasediments, although orthopyroxene-bearing gneisses are common in the Rauer Group; in contrast, Vestfold Block gneisses are predominantly orthopyroxene-bearing orthogneisses. The extensive Prydz Bay metasediments may have been derived by erosion of Middle Proterozoic rocks, such as the predominantly orthogneiss terrain of the Rauer Group, and deposited not long before the Late Proterozoic metamorphism. Data from nearby parts of the East Antarctic shield also suggest only limited Proterozoic reworking of the margins of the Archaean cratons.As in the Prydz Bay area, high-grade metamorphies in nearby parts of the East Antarctic shield show a secular increase in the sedimentary component. Archaean terrains like the Vestfold Block consist mainly of granitic orthogneisses derived by partial melting of igneous protoliths (I-type), whereas Late Proterozoic terrains (such as the Prydz Bay coast) include a much higher proportion of rocks derived either directly or by partial melting (S-type granitic orthogneisses) from sedimentary protoliths. Related chemical trends include increases in K2O2, Rb, Pb, and Th, and decreases in CaO, Na2O2 and Sr with decreasing age, essentially reflecting changes in the proportions of plagioclase and K-feldspar.  相似文献   

3.
In-situ zircon U–Pb and Hf isotopic analysis via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of samples from Kemp and MacRobertson Lands, east Antarctica suggests that the Kemp Land terrane evolved separately from the rest of the Rayner Complex prior to the ca. 940 Ma Rayner Structural Episode. Several Archaean metamorphic events in rocks from western Kemp Land can be correlated with events previously reported for the adjacent Napier Complex. Recently reported ca. 1,600 Ma isotopic disturbance in rocks from the Oygarden Group may be correlated with a charnockitic intrusion in the Stillwell Hills before ca. 1,550 Ma. Despite being separated by some 200 km, THfDM ages indicate felsic orthogneiss from Rippon Point, the Oygarden Group, Havstein Island and the Stillwell Hills share a ca. 3,660–3,560 Ma source that is indistinguishable from that previously reported for parts of the Napier Complex. More recent additions to this crust include Proterozoic charnockite in the Stillwell Hills and the vicinity of Mawson Station. These plutons have distinct 176Hf/177Hf ratios and formed via the melting of crust generated at ca. 2,150–2,550 Ma and ca. 1,790–1,870 Ma respectively.  相似文献   

4.
Abstract Polymetamorphic orthoamphibole-bearing gneisses from the vicinity of shear zones in Casey Bay, Enderby Land, Antarctica, record both the overprinting of Archaean granulite lithologies by Proterozoic metamorphism and the subsequent evolution of the latter episode during localized deformation.
Mineral chemistry and zoning relationships in orthoamphibole-garnet-kyanite-quartz and later orthoamphibole-garnet-cordierite-quartz assemblages are used together with interpretation of reaction and corona textures to constrain the Proterozoic pressure-temperature path experienced by the rocks. Consideration of reaction topologies, P-T-X(Fe-Mg-A1) relationships in orthoamphibole-bearing assemblages, and standard geothermobarometry indicate that the gneisses underwent a near-isothermal decompression P-T history (steep positive dP/dT) from ± 8 kbar and 700°C to <5.5kbar and 650°C. This uplift path is correlated with the general effects of Rayner Complex metamorphism and deformation which occurred after 1100 Ma in a major erogenic belt south of Casey Bay.  相似文献   

5.
The Shushui Complex can be divided into three rock units based on field investigation, petrography and geochemistry:(1) felsic gneisses, (2) supracrustal rocks consisting of amphibolite, marble and quartzite, and (3) late granites. Of the complex, felsic gneisses are dominant and formed in the Late Archaean, which were intruded by a basic dyke with a whole-rock Rb-Sr isochron age of 2264±219 Ma. The data on rare-earth elements as well as on major and trace elements presented for most of the rock types making up the complex suggest that (1) basic gneisses were produced by partial melting of mantle peridotite, followed by fractional crystallization, and (2) felsic gneisses produced by varying degree of melting of a mafic source. The most suitable tectonic setting to account for the generation of both types would be similar to the underplate setting.  相似文献   

6.
The Napier Complex of Enderby and Kemp Lands forms the north-western part of the East Antarctic Shield and consists predominantly of gneisses and granulites metamorphosed during a ca. 2.8 Ga high-grade and a ca. 2.5 Ga ultra-high temperature event. The western segment of the Napier Complex includes coastal outcrops, islands and nunataks around Amundsen and Casey Bays, and the Tula Mountains. This region records some of the highest metamorphic temperatures measured on Earth, affecting a variety of gneisses as old as ca. 3.8 Ga. Five samples of orthogneiss from the less-studied eastern Tula Mountains, including three granitic, one trondhjemitic and one dioritic gneiss, were dated by zircon U-Pb Secondary Ion Mass Spectrometry (SIMS). The three orthogneisses yield protolith ages of 3750 ± 35 Ma (granitic), 3733 ± 21 (trondhjemitic) Ma and 3560 ± 42 Ma (dioritic), whereas the two other granitic orthogneisses record ages of 2903 ± 14 Ma and 2788 ± 24 Ma. Zircon growth during metamorphism occurred at 2826 ± 10 Ma, and also between 2530 Ma and 2480 Ma. Samples from the Tula Mountains can be geochemically subdivided into Y-HREE-Nb-Ta depleted and undepleted groups. Eoarchean granitoids are included in both geochemical groups, as are Meso- and Neoarchean granitoids. The Y-HREE-Nb-Ta depleted granitoids can be generated by medium- to high-pressure melting of mafic crust, whereas undepleted granitoids can be generated by low-pressure melting. However, relatively high potassium contents in most samples, and the presence of xenocrystic/inherited zircon in some, reflect the likely involvement of felsic crustal sources. This diversity in granitoid composition occurs across the Napier Complex. The lack of a simple correlation between protolith age and geochemical type is an indication that magmatism during the Eoarchean (and later) involved diverse sources and processes, including re-melting and recycling of various crustal components, rather than just the formation of juvenile crust.  相似文献   

7.
Two episodes of tholeiite dyke emplacement have been identified in Archaean high-grade metamorphics of the Napier Complex in Enderby Land. Middle Proterozoic Amundsen dykes are typical continental tholeiites and most of the chemical variation in individual suites can be explained in terms of different degrees of partial melting and low-pressure crystal fractionation. Group I Amundsen tholeiites were derived from a relatively homogeneous source region 1,190±200 m.y. ago, whereas that of the group II Amundsen tholeiites was chemically and isotopically heterogeneous. Group II dykes have various degrees of enrichment in incompatible elements, and commonly show normalised trace element abundance patterns with negative Nb anomalies. These features imply variable metasomatism of the source region by a volatile-rich fluid phase (rather than a melt of any observed igneous composition) enriched in K, Rb, Ba, Th, and possibly La and Ce.Early Proterozoic (2,350±48 m.y.) tholeiites were emplaced at considerable depths in the crust during the waning stages of granulite-facies metamorphism and include a high-Mg suite of possible komatiitic affinity, ranging in composition from hypersthene-rich tholeiite (norite) to quartz-rich tholeiite. They tend to have higher ratios of highly to moderately incompatible elements (e.g., K/Zr, K/Ce), and larger Nb anomalies (i.e., higher K/Nb) compared with middle Proterozoic tholeiites, suggesting derivation from more enriched source regions. Isotopic data are not compatible with significant crustal contamination, but constrain source metasomatism to a time immediately before emplacement. Metasomatism of the source region of the much younger group I tholeiites may have been contemporaneous with that of the high-Mg suite.  相似文献   

8.
Several bodies of granulites comprising charnockite, charno-enderbite, pelitic and calc-silicate rocks occur within an assemblage of granite gneiss/granitoid, amphibolite and metasediments (henceforth described as banded gneisses) in the central part of the Aravalli Mountains, northwestern India. The combined rock assemblage was thought to constitute an Archaean basement (BGC-II) onto which the successive Proterozoic cover rocks were deposited. Recent field studies reveal the occurrence of several bodies of late-Palaeoproterozoic (1725 and 1621 Ma) granulites within the banded gneisses, which locally show evidence of migmatization at c. 1900 Ma coeval with the Aravalli Orogeny. We report single zircon ‘evaporation’ ages together with information from LA-ICP-MS U-Pb zircon datings to confirm an Archaean (2905 — ca. 2500 Ma) age for the banded gneisses hosting the granulites. The new geochronological data, therefore, suggest a polycyclic evolution for the BGC-II terrane for which the new term Sandmata Complex is proposed. The zircon ages suggest that the different rock formations in the Sandmata Complex are neither entirely Palaeoproterozoic in age, as claimed in some studies nor are they exclusively Archaean as was initially thought. Apart from distinct differences in the age of rocks, tectono-metamorphic breaks are observed in the field between the Archaean banded gneisses and the Palaeoproterozoic granulites. Collating the data on granulite ages with the known tectono-stratigraphic framework of the Aravalli Mountains, we conclude that the evolution and exhumation of granulites in the Sandmata Complex occurred during a tectono-magmatic/metamorphic event, which cannot be linked to known orogenic cycles that shaped this ancient mountain belt. We present some field and geochronologic evidence to elucidate the exhumation history and tectonic emplacement of the late Palaeoproterozoic, high P-T granulites into the Archaean banded gneisses. The granulite-facies metamorphism has been correlated with the thermal perturbation during the asymmetric opening of Delhi basins at around 1700 Ma.  相似文献   

9.
Amphibolite facies early Archaean Amîtsoq gneisses envelop and intrude the c. 3,800 Ma Isua supracrustal belt, Isukasia area, southern West Greenland. Most of these gneisses are strongly deformed, but in a c. 75 km2 augen of lower deformation, the Amîtsoq gneisses are seen to comprise predominantly 3,750–3,700 Ma tonalitic grey gneisses that were intruded first by thin bodies of mafic to dioritic composition, known collectively as the Inaluk dykes, and then by c. 3,600 Ma white gneisses and finally by sporadic c. 3,400 Ma pegmatitic gneiss sheets. The grey gneisses could have formed by partial melting of crust consisting predominantly of basic rocks. The Inaluk dykes are interpreted as strongly fractionated basic melts of mantle origin, contaminated by crustal material. The white gneisses consist mostly of medium grained granite and occur as lenses and anastomosing sheets throughout their host of grey gneisses with subordinate inclusions of supracrustal rocks. The white gneisses have chemistry compatible with formation by partial melting at depth of a source dominated by grey gneisses. The igneous chemistry, including REE abundances, of the grey gneisses and white gneisses has been modified to varying degrees by metasomatism and assimilation reactions during the crystallisation of the white gneisses and also during subsequent tectonometamorphic events. The white gneisses are evidence for considerable reworking by anatexis of sialic crust in the early Archaean, 150 to 100 Ma after its formation. The white gneisses and the pegmatitic gneisses show that granitic rocks s.s. were important in the earliest Archaean, and are further evidence of the diversity of the oldest-known sial.Previously at and the Geological Survey of Greenland, Øster Voldgade 10, 1350 Copenhagen K, Denmark  相似文献   

10.
This study presents new results on zircons from the enderbite-charnockite rocks of Enderby Land, East Antarctica. U-Pb age of 3981 ± 8 Ma (SIMS SHRIMP II), which was first obtained for a protolith of massive enderbites from Aker Peaks, eastern Napier Mts, suggests that the existence of sialic crust in the study area at 4 Ga. Although there was only one magmatic zircon (of 150 grains analyzed) in the study area known with the oldest age, its significance cannot be overestimated, since it may indirectly evidence the existence of an Early Archean crustal block with a minimum age of 4 Ga, which extends for over 300 km across Enderby Land from its western to eastern part. Based on the U-Pb systematics, REE and trace element distributions in zircons from charnockite and enderbite gneisses, high-aluminous gneisses, and basic granulites, we first revealed that an early high-temperature metamorphic event accompanied by the emplacement of granodiorite intrusions occurred in the vicinity of Aker Peaks at 3620–3630 Ma. Although the 2850–3050 metamorphic overprints are clearly observed in some other areas of Enderby Land and are widely considered to be of critical importance on a regional scale, their metamorphic signatures are apparently absent from the U-Pb systematics of the studied zircon, thus suggesting the presence of similar old zircons in the study area. At the same time, all samples in this study record a 2480–2550 Ma granulite-amphibolite facies overprint represented as new zircon growths or recrystallization of earlier phases.  相似文献   

11.
Garnet-orthopyroxene bearing granulite assemblages from theArchaean Napier Complex, Enderby Land, Antarctica, display avariety of exsolution, recrystallization and corona textureswhich result both from near-isobaric cooling from the peak ofmetamorphism and from later overprinting. Compositional dataon distinct generations of phases and on zoning patterns incoexisting minerals, have been used to estimate (a) peak metamorphicconditions attained between the first and second major deformationphases (Dl and D2); (b) cooling paths from this peak, and (c)ambient metamorphic conditions at the time of a later deformation(D3). Experimentally calibrated geothermobarometers indicateinitial metamorphism at 900–950?C and 7–10 kb duringand subsequent to Dl and D2, at 3100–3000 Ma. The presentlyexposed granulites indicate a regional increase in the pressuresof this metamorphism south-west to the Scott Mountains-CaseyBay region, where minimum crustal thicknesses of 10 kb wereattained at c. 3000 Ma. Subsequently, the Napier Complex granulitesevolved through a prolonged period of near-isobaric coolingprior to further metamorphism at 600–750 and 4–8kb during D3 at c. 2500 Ma. The near-isobaric pressure-temperature-timepath (P-T-t) suggests that the Napier Complex acted as an essentiallystable craton as early as 3000 Ma, and that the major magmaticand tectonic crustal thickening events associated with Dl precededthe thermal peak represented by the earliest recognized metamorphism.  相似文献   

12.
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon, oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted, respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Precambrian granulite-facies rocks occur in significant proportion in the East Antarctic Precambrian shield. Ages of metamorphic and deformational events range from 2500 m.y. to about 500 m.y., but some rocks are much older, notably the approximately 3500 m.y. ages for crust formation in Enderby Land. Mineral assemblages over most of the area are typical of the hornblende granulite facies, and sparse temperature pressure estimates indicate metamorphism at 700–800°C and 5–8 kbar at reduced water pressures. A terrane of exceptional interest is the Napier complex of Enderby Land, where sapphirine-quartz ± garnet, sillimanite-orthopyroxene, osumilite, and inverted pigeonite are associated with pyroxene-granulite-facies rocks. Metamorphic conditions are estimated to have reached 900°–980°C, 7–9 kbar, and pH2O < 0.5 kbar. Metamorphism in the Napier complex, and possibly in other parts of East Antarctica, may be associated with large loss of fluid rather than massive influx of CO2.  相似文献   

14.
The gneisses and granitoids of Bastar craton (with rock suites up to 3.5 Ga) show calc-alkaline trondhjemitic characteristics. The rocks are enriched in both LILE and HFSE than primordial mantle. They have also relatively higher abundances of LILE and strong depletion at P and Ti in the multielement diagram. The depletion of Ti and P indicates retention of these elements by titanite and/or apatite during partial melting. It is proposed that subduction of an oceanic slab and its consequent melting led to the formation of the protoliths of the gneisses without much interaction with the mantle wedge. The granitoids represent temporally distinct suites formed in response to further melting of slab at greater depth and interaction of magma with the mantle wedge during their transport to the crust.  相似文献   

15.
The In Ouzzal terrane (Western Hoggar) is an example of Archaean crust remobilized during a very-high-temperature metamorphism related to the Paleoproterozoic orogeny (2 Ga). Pan-African events (≈0.6 Ga) are localized and generally of low intensity. The In Ouzzal terrane is composed of two Archaean units, a lower crustal unit made up essentially of enderbites and charnockites, and a supracrustal unit of quartzites, banded iron formations, marbles, Al–Mg and Al–Fe granulites commonly associated with mafic (metanorites and garnet pyroxenites) and ultramafic (pyroxenites, lherzolites and harzburgites) lenses. Cordierite-bearing monzogranitic gneisses and anorthosites occur also in this unit. The continental crust represented by the granulitic unit of In Ouzzal was formed during various orogenic reworking events spread between 3200 and 2000 Ma. The formation of a continental crust made up of tonalites and trondhjemites took place between 3200 and 2700 Ma. Towards 2650 Ma, extension-related alkali-granites were emplaced. The deposition of the metasedimentary protoliths between 2700 and 2650 Ma, was coeval with rifting. The metasedimentary rocks such as quartzites and Al–Mg pelites anomalously rich in Cr and Ni, are interpreted as a mixture between an immature component resulting from the erosion and hydrothermal alteration of mafic to ultramafic materials, and a granitic mature component. The youngest Archaean igneous event at 2500 Ma includes calc-alkaline granites resulting from partial melting of a predominantly tonalitic continental crust. These granites were subsequently converted into charnockitic orthogneisses. This indicates crustal thickening or heating, and probably late Archaean high-grade metamorphism coeval with the development of domes and basins. The Paleoproterozoic deformation consists essentially of a re-activation of the pre-existing Archaean structures. The structural features observed at the base of the crust argue in favour of deformation under granulite-facies. These features are compatible with homogeneous horizontal shortening of overall NW–SE trend that accentuated the vertical stretching and flattening of old structures in the form of basins and domes. This shortening was accommodated by horizontal displacements along transpressive shear corridors. Reactional textures and the development of parageneses during the Paleoproterozoic suggest a clockwise P–T path characterized by prograde evolution at high pressures (800–1050 °C at 10–11 kbar), leading to the appearance of exceptional parageneses with corundum–quartz, sapphirine–quartz and sapphirine–spinel–quartz. This was followed by an isothermal decompression (9–5 kbar). Despite the high temperatures attained, the dehydrated continental crust did not undergo any significant partial melting. The P–T path followed by the granulites is compatible with a continental collision, followed by delamination of the lithosphere and uprise of the asthenosphere. During exhumation of this chain, the shear zones controlled the emplacement of carbonatites associated with fenites.  相似文献   

16.
The Gjerstad-Morkeheia Complex contains a series of highly differentiated, iron and alkali enriched intrusions. The rocks range from basic to acid compositions and were variably mylonitised (under anhydrous conditions) before being metamorphosed (and hydrated) at upper amphibolite facies grade. They now form a series of ironenriched metagabbros, metadiorites and granodioritic gneisses, together with granitic and charnockitic augen gneisses. The augen formed by shearing of original megacrysts in the igneous rocks. A major mylonite zone formed at the same time.The rocks are enriched in Fe, Mn, K, Na, Ti, Zr, Ba, P, La, Ce and impoverished in Mg, V, Ni, Cr and are considered to result from extreme differentiation of an alkaline magma. They are interpreted in terms of a two-stage model, with the intrusion of several fractionated batches of magma, each of which differentiated in situ.The rocks show some affinities with other Proterozoic complexes, particularly some anorthosite-monzonite-charnockite suites (e.g. in SW Norway and in the Grenville Province) and differentiated alkaline suites (e.g. in the Gardar Province of South Greenland).The intrusions were anorogenic and emplaced in rocks which had been metamorphosed (between 1,600 and 1,500 Ma). Subsequent thrusting and mylonitisation was followed by crustal thinning and attempted rifting with widespread intrusion of basic rocks (around 1,200 Ma). The rifting was aborted by the onset of the Sveconorwegian (Grenvillian) orogeny and probably relates to similar basic intrusive activity elsewhere in the Proterozoic supercontinent which was ultimately, successfully broken up after the Grenville orogeny.  相似文献   

17.
A distinctive group of augen gneisses and ferrodiorites (termed the iron-rich suite) is a component of the early Archaean Amîtsoq gneisses of southern West Greenland. The iron-rich suite outcrops south of the mouth of Ameralik fjord in an area that underwent granulite facies metamorphism in the early Archaean. The iron-rich suite forms approximately 30% of the Amîtsoq gneiss of this area and occurs as sheets and lenses up to 500 m thick. The rest of the Amîtsoq gneisses are predominantly tonalitic-granodioritic, banded grey gneisses. Despite intense deformation and polymetamorphism, there is local field evidence that the iron-rich suite was intruded into the grey gneisses after they had been affected by tectonism and metamorphism. The banded grey gneisses are interpreted as 3,700 to 3,800 Ma old; U-Pb zircon ages from the iron-rich suite give concordia intercepts at circa 3,600 Ma.Coarse grained augen gneisses with microcline mega-crysts are the dominant lithology of the iron-rich suite. They are mostly granodioritic, grading locally into granite and diorite, and are generally rather massive, but locally have well-preserved layering or are markedly heterogeneous. Mafic components are commonly concentrated into clots rich in hornblende and biotite and containing apatite, ilmenite, sphene and zircon. Variation in the proportion of these clots is the main reason for the compositional variation of the augen gneisses. The ferrodiorites of the suite occur as lenses in the augen gneisses. Leucocratic granitoid sheets locally cut the iron-rich suite. The augen gneisses and ferrodiorites have geochemical characteristics in common, such as high Fe/Mg values and high contents of FeOt, TiO2, P2O5, Zr, Y and total REE (rare earth elements).The iron-rich suite probably formed as follows:Heating of the lower crust adjacent to mantle-derived basic intrusions caused melting of the lower crust, giving rise to granodioritic magmas. Disruption of partially crystallised basic intrusions caused mixing of the crustal melts and the fractionated mantle melts to produce the augen gneisses with their high FeOt, TiO2, P2O5, Zr, Y and total REE enrichment. Fragmented, crystallised parts of the basic intrusions gave rise to the ferrodiorite inclusions. These heterogeneous plutons rose to higher crustal levels where they crystallised as sheets and possibly were responsible for the local granulite facies metamorphism. The granitoid sheets that cut the iron-rich suite are interpreted as crustal melts of local origin.The iron-rich suite resembles Proterozoic rapakivi granite-ferrodiorite-norite (anorthosite) associations which form characteristic suites in late- to post-tectonic environments in recently thickened sial. The occurrence of this type of magmatism in the early Archaean is evidence of the complex, polygenetic nature of the oldest known continental crust.  相似文献   

18.
Abstract New isotopic (Rb–Sr, U–Pb zircon and Sm–Nd) and petrological data are presented for part of an extensive Proterozoic mobile belt (locally known as the Rayner Complex) in East Antarctica. Much of the belt is the product of Mid-Proterozoic (∼ 1800–2000 Ma) juvenile crustal formation. Melting of this crust at about 1500 Ma ago produced the felsic magmas from which the dominant orthogneisses of this terrain were subsequently derived. Deformation and transitional granulite-amphibolite facies conditions (which peaked at 750 ± 50°C and 7–8 kbar (0.7–0.8 GPa) produced open to tight folding about E–W axes and syn-tectonic granitoids about 960 Ma ago. Subsequent felsic magmatism occurred at about 770 Ma and not, as has been widely advocated, at 500–550 Ma, which appears to have been a time of widespread upper greenschist facies (400–500°C) metamorphism, localized shearing and faulting. Sm-Nd model ages of 1.65–2.18 Ga disprove a previously favoured hypothesis that the Rayner Complex mostly represents reworked Archaean rocks from the neighbouring craton (Napier Complex). Models that involve rehydration of the Napier Complex are no longer required, since the Rayner Complex was its own source of water. Two episodes of Proterozoic crustal growth are identified, the later of which occurred between about 1200 Ma and 1000 Ma, and was relatively minor. Sedimentation took place only shortly before Late Proterozoic orogenesis. The multiphase history of the Rayner Complex has resulted in complex isotopic behaviour. Three temporally discrete episodes of Pb loss from zircon have been identified, the earliest two of which are responses to the c. 960 Ma and 540 Ma tectonothermal events. Fluid leaching was operative during the later event for there is a good correlation between degree of isotopic discordance and secondary mineral growth. Pb loss during the high-grade event was probably governed by the same process or by lattice annealing. Some zircon suites also document recent Pb loss. Most lower concordia intercepts have no direct geological meaning and are explicable as mixed ages produced by incomplete Pb loss during two or more secondary events. Whereas all zircon separates from the orthogneisses produce U–Pb isotopic alignments, zircons from the only analysed paragneiss produce scattered data, in part reflecting a range of provenance. The 960 Ma event was also associated with the growth of a characteristically low U zircon (∼ 300 μg/g) in rocks of inferred high Zr content. There is ubiquitous evidence for the resetting of Rb–Sr total-rock isochrons. Even samples separated by up to 10 km fail to produce igneous crystallization ages. Minor mineralogical changes produced by the 540 Ma upper greenschist-facies metamorphism were sufficient to almost completely reset some Rb–Sr isochrons and to produce open system conditions on outcrop scale, at least in one location.  相似文献   

19.
The Xes-Xen dating of zircons from rocks of the Rayner Complex of the Enderby Land at the Molodezhnaya Station area (coast of the Alasheyev Bight) yielded age estimates of 550 ± 50 and 1040 ± 30 Ma. The metamorphic rocks of the Rayner Complex record two main events: first, the crystallization of the magmatic protoliths of charnockitic and enderbitic gneisses and, second, superimposed structural and metamorphic alterations under conditions transitional from the amphibolite to granulite facies (metamorphism manifested regionally in the rocks of the Rayner Complex). The most reliable Xes-Xen age estimates for magmatic zircons from the charnockitic and enderbitic gneisses correspond to the Grenville stage of the development of the Rayner Complex (~1.0 Ga). The Xe isotopic systematics of metamorphic zircons reflect a pan-African stage in the evolution of the Rayner Complex (600–550 Ma). Pan-African events are reflected in the U-Xe isotope system in two cases: if metamorphic zircons crystallized at the same time (which probably resulted in the formation of a plateau in the Xes-Xen age spectrum) and if the initial isotopic systems were disturbed (which resulted in a decrease in apparent age toward low-temperature gas fractions). It is important that secondary alterations and a decrease in apparent ages to 600–550 Ma affected only those components (i.e., caused xenon release only from those traps) that were unstable under the maximum metamorphic temperatures and yielded T cl values lower than 750°C (conditions transitional from the amphibolite to granulite facies). At a higher xenon retention, “primary” isotopic systems are preserved. Consequently, the age of metamorphism transitional between the amphibolite and granulite facies can be estimated at 600–550 Ma on the basis of Xes-Xen dating. In general, the results of our study indicate that the age of regional metamorphism of the Rayner complex at the Molodezhnaya area is approximately 600–550 Ma rather than ~1.0 Ga, as was previously supposed.  相似文献   

20.
Zircon megacrysts are locally abundant in 1–40 cm-thick orthopyroxenite veins within peridotite host rocks in the Archaean Lewisian gneiss complex from NW Scotland. The veins formed by metasomatic interaction between the ultramafic host and Si-rich melts are derived from partial melting of the adjacent granulite-facies orthogneisses. The interaction produced abundant orthopyroxene and, within the thicker veins, phlogopite, pargasite and feldspathic bearing assemblages. Two generations of zircon are present with up to 1 cm megacrystic zircon and a later smaller equant population located around the megacryst margins. Patterns of zoning, rare earth element abundance and oxygen isotopic compositions indicate that the megacrysts crystallized from crustal melts, whereas the equant zircon represents new neocryst growth and partial replacement of the megacryst zircon within the ultramafic host. Both zircon types have U–Pb ages of ca. 2464 Ma, broadly contemporaneous with granulite-facies events in the adjacent gneisses. Zircon megacrysts locally form?>?10% of the assemblage and may be associated to zones of localized nucleation or physically concentrated during movement of the siliceous melts. Their unusual size is linked to the suppression of zircon nucleation and increased Zr solubility in the Si-undersaturated melts. The metasomatism between crustal melts and peridotite may represent an analog for processes in the mantle wedge above subducting slabs. As such, the crystallization of abundant zircon in ultramafic host rocks has implications for geochemistry of melts generated in the mantle and the widely reported depletion of high field strength elements in arc magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号