首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).  相似文献   

2.
In order to understand the seasonal variation of aerosol optical properties in the Yangtze River Delta,5 years of measurements were conducted during September 2005 to December 2009 at Taihu,China.The monthly averages of aerosol optical depth were commonly >0.6;the maximum seasonal average(0.93) occurred in summer.The magnitude of the Angstr¨om exponent was found to be high throughout the year;the highest values occurred in autumn(1.33) and were the lowest in spring(1.08).The fine modes of volume size distribution showed the maxima(peaks) at a radius of ~0.15 μm in spring,autumn,and winter;at a radius of ~0.22 μm in summer.The coarse modes showed the maxima(peaks) at a radius of 2.9 μm in spring,summer,and autumn and at a radius of 3.8 μm in winter.The averages of single-scattering albedo were 0.92(spring),0.92(summer),0.91(autumn),and 0.88(winter).The averages of asymmetry factor were found to be larger in summer than during other seasons;they were taken as 0.66 at 440-1020 nm over Taihu.The real part of the refractive index showed a weak seasonal variation,with averages of 1.48(spring),1.43(summer),1.45(autumn),and 1.48(winter).The imaginary parts of the refractive index were higher in winter(0.013) than in spring(0.0076),summer(0.0092),and autumn(0.0091),indicating that the atmosphere in the winter had higher absorbtivity.  相似文献   

3.
The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a function of relative humidity (RH) for two representative metropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM 10 (particulate matter up to 10 μm in diameter) and aerosol scattering extinction coefficient (σ ext ) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as σ ext /PM 10 ) and RH can be expressed by regression functions as f = 1.52x + 0.29 (r2 = 0.77), f = 1.42x + 1.53 (r2 = 0.58), f = 1.19x + 0.65 (r2 = 0.59), and f = 1.58x + 1.30 (r2 = 0.61) for spring, summer, autumn, and winter, respectively, in Beijing. Here, f represents MEE, x represents 1/(1 RH), and the coefficients of determination are pre- sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f = 1.98x 1.40 (r2 = 0.55), f = 1.32x 0.36 (r2 = 0.26), f = 1.87x 0.65 (r2 = 0.64), and f = 2.39x 1.47 (r2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hygroscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and groundlevel air quality using some of the optical remote sensing products of satellites.  相似文献   

4.
During the period between 18 August and 22 September 2006, an ultraviolet photometric O3 analyzer, a NO-NO2-NOx chemiluminescence analyzer, and a quartz micro-oscillating-scale particle concentration analyzer were simultaneously used for monitoring at three different heights each at Beijing (325-m tower) and Tianjin (255-m tower). These towers belong to the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) and to the Tianjin Municipal Meteorological Bureau, respectively. These measurements were used to continuously measure the atmospheric O3 and NOx volume-by-volume concentrations and the PM2.5 mass concentration within a vertical gradient. When combined with meteorological data and information on the variation of vertical characteristics of the various atmospheric pollutants in the two cities, analysis shows that these two cities were seriously polluted by both PM2.5 and O3 during summer and autumn. The highest daily-average concentrations of PM2.5 near the ground in Beijing and Tianjin reached 183 μg m-3 and 165 μg m-3, respectively, while the O3 concentrations reached 52 ppb and 77 ppb, and NOx concentrations reached 48 ppb and 62 ppb for these two cities, respectively. The variations in the daily-average concentrations of PM2.5 between Beijing and Tianjin were demonstrated to be consistent over time. The concentrations of PM2.5 measured in Beijing were found to be higher than those in Tianjin. However, the overall O3 concentrations near the ground in Tianjin were higher than in Beijing. NOx concentrations in Tianjin were consistently lower than in Beijing. It was also found that PM2.5 pollution in Beijings atmosphere may also be affected by the pollutants originating in and delivered from Tianjin, and that Ti  相似文献   

5.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

6.
In this study, a regional air quality model system (RAQMS) was applied to investigate the spatial distributions and seasonal variations of atmospheric aerosols in 2006 over East Asia. Model validations demonstrated that RAQMS was able to reproduce the evolution processes of aerosol components reasonably well. Ground-level PM10 (particles with aerodynamic diameter ≤10 μm) concentrations were highest in spring and lowest in summer and were characterized by three maximum centers: the Taklimakan Desert (~1000 μg m-3), the Gobi Desert (~400 μg m-3), and the Huabei Plain (~300 μm-3) of China. Vertically, high PM10 concentrations ranging from 100 μg m-3 to 250 μg m-3 occurred from the surface to an altitude of 6000 m at 30o--45oN in spring. In winter, the vertical gradient was so large that most aerosols were restricted in the boundary layer. Both sulfate and ammonium reached their highest concentrations in autumn, while nitrate reached its maximum level in winter. Black carbon and organic carbon aerosol concentrations reached maximums in winter. Soil dust were strongest in spring, whereas sea salt exerted the strongest influence on the coastal regions of eastern China in summer. The estimated burden of anthropogenic aerosols was largest in winter (1621 Gg) and smallest in summer (1040 Gg). The sulfate burden accounted for ~42% of the total anthropogenic aerosol burden. The dust burden was about twice the anthropogenic aerosol burden, implying the potentially important impacts of the natural aerosols on air quality and climate over East Asia.  相似文献   

7.
The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of 1998-2004. The stratospheric aerosol distributions exhibited hemispheric asymmetry between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In the lower stratosphere below 20 km, the zonal averaged aerosol optical depths in the NH were higher than those of the corresponding SH; whereas at higher altitudes above 20 km, the optical depths in the SH-- except the equatorial region--were higher than those of the NH. At 0-10°N and 10-20°N, the stratospheric aerosol optical depth (SAOD) exhibited larger values in boreal winter and lower values in the spring and summer; at 0-10°S and 10-20°S, the SAOD presented small seasonal variations. At 30-40°N, the SAOD presented larger values in the boreal fall and winter and lower values in the spring and summer; while at 30-40°S, the SAOD exhibited larger values in the austral winter and early spring and lower values in the summer and fall. These characteristics can mainly be attributed to the seasonal cycle of the dynamic transport, and the effects of the buildup and breakdown of the polar vortex. At 50-60°S, the SAOD exhibited extremely high values during austral winter associated with the Antarctic polar vortex boundary; at 50-60°N, the SAOD also exhibited larger values during the boreal winter, but it was much less obvious than that of its southern counterpart.  相似文献   

8.
Campaigns were conducted to measure Organic Carbon (OC) and Elemental Carbon (EC) in PM2.5 during winter and summer 2003 in Beijing. Modest differences of PM2.5 and PM10 mean concentrations were observed between the winter and summer campaigns. The mean PM2.5/PM10 ratio in both seasons was around 60%, indicating PM2.5 contributed significantly to PM10. The mean concentrations of OC and EC in PM2.5 were 11.2±7.5 and 6.0±5.0μg m-3 for the winter campaign, and 9.4±2.1 and 4.3±3.0 μg m-3 for the summer campaign, respectively. Diurnal concentrations of OC and EC in PM2.5 were found high at night and low during the daytime in winter, and characterized by an obvious minimum in the summer afternoon. The mean OC/EC ratio was 1.87±0.09 for winter and Z39±0.49 for summer. The higher OC/EC ratio in summer indicates some formation of Secondary Organic Carbon (SOC). The estimated SOC was 2.8 μg m-3 for winter and 4.2μg m-3 for summer.  相似文献   

9.
In this paper,based on the data at 70 stations selected evenly over China for 31 years from1961—1991.three methods to estimate climatic noise have been discussed and then the climaticnoise and potential predictability of monthly precipitation(January.July.April and October)havebeen examined.The estimating of climatic noise is based on the method of Madden and improvedmethods of Trenberth and Yamamoto et al.(1985).The potential predictability is approximatedby the ratio of the estimated interannual variation to the natural variation.Generally.the climaticnoise of monthly precipitation over China has obvious seasonal variation and it is greater in summerthan in winter,a bit greater in autumn than in spring.In most areas,the climatic noise isprominently decreasing from south to north and from coast to inland.The potential predictabilityof monthly precipitation also has obvious seasonal and regional difference,but the potentialpredictability is greater in winter than in summer in most parts of China.Whereas the comparisonof spring and autumn is not obvious.Comparing with the method of Madden,the estimated valuesof climatic noise based on the improved methods of Trenberth and Yamamoto et al.are relativelylower.  相似文献   

10.
The column-integrated optical properties of aerosol in Beijing and Xianghe, two AErosol RObotic NETwork(AERONET)sites situated on the North China Plain(NCP), are investigated based on Cimel sunphotometer measurements from October2004 to June 2012. The outstanding feature found is that the seasonal medians of aerosol optical depth(AOD) at the two stations are in good agreement. The correlation coefficients and the absolute differences between AOD at the two stations are larger than 0.84 and less than 0.05, respectively. Good agreement in AOD at these two sites(one urban and the other suburban; 70 km apart) indicates that aerosol pollution in the Greater Beijing area is regional in nature. However, we find significant differences in the absorption ?Angstr ¨om Exponent(AAE), the real and imaginary part of the refractive index, and thereby the single scattering albedo(SSA), and the difference is seasonally dependent. The feature is found to be more prominent in fall when the fine-mode fraction(FMF) and fine-mode effective radius are significantly different at the two stations,besides the parameters mentioned above. The SSA in Beijing at four wavelengths shows lower values as compared to those in Xianghe, although the difference is not significant in some cases. Significant differences in AAE and fine-mode effective radius indicate that there are differences in aerosol physical and chemical properties in urban and suburban regions on the NCP.  相似文献   

11.
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002–2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM10, PM2.5 and PM1 levels at MSY during 2002–2007 were 16, 14 and 11 µg/m3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM2.5 and PM10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.  相似文献   

12.
Organic and elemental carbon (OC and EC) content in PM10 was studied at two sites in Prague, which were located in a suburb and in the downtown. Similar overall average levels were found for both species and also for the PM10 mass at the two sites (i.e., 5.5 and 4.8 μg/m3 for OC, 0.74 and 0.80 μg/m3 for EC, and 33 μg/m3 and 37 μg/m3 for the PM10 mass at the suburb and downtown site, respectively), but substantial differences were observed between the two sites in some seasons and/or meteorological situations. Approximately three times higher values were found for OC in winter compared to summer, with a higher winter/summer ratio for the suburban site. The differences for EC were smaller, but still, compared to summer, more than two times higher EC levels were observed during autumn at the suburban site and 1.5 higher EC levels in winter and autumn at the downtown site. The lowest OC to EC ratios at the suburban site were 3.4, while they were around 1.3 for the downtown site. It was found that the origin of the air masses had a major impact on the observed PM10 mass and OC levels, with largest concentrations noted for air masses recirculating over central Europe and arriving from southeastern Europe in winter. Trajectories coming from the west and northwest originating above the Atlantic Ocean and the Artic brought the cleanest air masses to the sites. For EC the largest difference between the two sites was observed for northwesterly winds during the non-heating season when the suburban site was upwind of Prague.  相似文献   

13.
北京不同区域气溶胶辐射效应   总被引:1,自引:0,他引:1       下载免费PDF全文
采用大气辐射传输模式SES2以及2013年1月—2015年10月欧洲中期天气预报中心细网格再分析资料计算了北京地区4个观测站地面接收的短波辐射通量,分析了晴天和云天北京城郊气溶胶对总辐射的定量影响时空变化特征。结果表明:北京城区和近郊区气溶胶对总辐射的影响约为远郊区的2倍,北京南部和西部气溶胶对辐射的影响较大,晴天和云天北京城区和近郊区气溶胶对总辐射的削减值分别为146.23~180.99 W·m-2和202.11~217.02 W·m-2,晴天总辐射削减空间差异较大;秋冬季气溶胶对总辐射的影响明显大于春夏季,北京市观象台秋冬季气溶胶对总辐射的削减作用最大可达60%,较春夏季高10%~20%;北京城郊总辐射和直接辐射削减率与气溶胶光学厚度变化均呈线性关系,近地面PM2.5浓度对辐射的影响不容忽视。  相似文献   

14.
气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用“国际大气化学—气候模式比较计划”(Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N~45°N, 105°E~122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM2.5)浓度的影响有显著的季节变化特征,冬季PM2.5浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM2.5浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。  相似文献   

15.
对2002年1月1日-2002年12月31日日照市环境监测中心提供的PM10(可吸入颗粒物)日平均浓度资料和对应时段的日照市地面气象资料做了深入的分析,揭示了污染物PM10变化特征及其随气象要素的变化规律。同时分析了主要污染物PM10与地面风速、风向间的相关关系,发现日照市大于等于3级的PM10污染日均出现在1-4月,地面风速对污染物PM10浓度有一定影响,当地面风速超过5m/s时,3级及以上污染日很少出现,当地面风速超过6.5m/s时,随着风速的提高,污染物浓度呈下降趋势。污染物浓度呈明显的季节变化,冬、春季节明显高于夏、秋季节。  相似文献   

16.
Shanghai is the largest industrial and commercial city in China, and its air quality has been deteriorating for several decades. However, there are scarce researches on the level and seasonal variation of fine particle (PM2.5) as well as the carbonaceous fractions when compared with other cities in China and around the world. In the present paper, abundance and seasonal characteristics of PM2.5, organic carbon (OC) and elemental carbon (EC) were studied at urban and suburban sites in Shanghai during four season-representative months in 2005–2006 year. PM2.5 samples were collected with high-vol samplers and analyzed for OC and EC using thermal-optical transmittance (TOT) protocol. Results showed that the annual average PM2.5 concentrations were 90.3–95.5 μg/m3 at both sites, while OC and EC were 14.7–17.4 μg/m3 and 2.8–3.0 μg/m3, respectively, with the OC/EC ratios of 5.0–5.6. The carbonaceous levels ranked by the order of Beijing > Guangzhou > Shanghai > Hong Kong. The carbonaceous aerosol accounted for  30% of the PM2.5 mass. On seasonal average, the highest OC and EC levels occurred during fall, and they were higher than the values in summer by a factor of 2. Strong correlations (r = 0.79–0.93) between OC and EC were found in the four seasons. Average level of secondary organic carbon (SOC) was 5.7–7.2 μg/m3, accounting for  30% of the total OC. Strong seasonal variation was observed for SOC with the highest value during fall, which was about two times the annual average.  相似文献   

17.
利用江苏省大气环境监测站点的大气污染物监测数据,分析了2020年初新冠肺炎疫情管控期间(2—3月)主要大气污染物浓度的变化特征。结果显示,相比于2019、2020年疫情管控期间PM_(2.5)、PM_(10)、NO_(2)、SO_(2)、CO浓度的全省平均降幅分别为37.5%、36.9%、31.9%、28.2%和21.2%。严格管控期的2月和生产恢复期的3月,江苏省十三市PM_(2.5)、PM_(10)浓度同比降幅大致相当,呈现出较好的时间连续性和空间均匀性。但各市臭氧浓度同比变化呈现出较大的时空差异。空间上,沿江以南城市南京、无锡、常州、苏州和镇江五市臭氧浓度明显上升,而其他城市臭氧浓度以下降为主;时间上,2月南京等九市臭氧浓度上升,3月徐州等八市臭氧浓度持平或者下降。假设未发生新冠肺炎疫情以及未采取为阻断疫情蔓延而实施的种种举措,在仅考虑近年来大气污染防治政策持续实施的情况下,与预期降幅相比,疫情管控对NO_(2)实况浓度降幅的影响最大,其次是PM_(2.5)和PM_(10)。  相似文献   

18.
通过分析2001—2012年上海市PM_(10)浓度(由API(Air Pollution Index)转化得到)的变化规律,构建了上海市PM_(10)浓度的遥感反演模型。结果表明:1)上海市PM_(10)浓度存在季节性变化,应分别建立遥感反演模型。2)分析MODIS气溶胶光学厚度(Aerosol Optical Depth,AOD)产品与PM_(10)浓度之间的相关性发现,AOD须经过垂直和湿度订正才可与PM_(10)建立较好的关系。3)结合垂直和湿度订正分别建立的上海市PM_(10)浓度春夏秋冬四季的遥感反演模型均通过了拟合度检验,其中春季模型采用指数函数、夏季和秋季模型采用二次多项式函数、冬季采用幂函数、全年采用二次多项式函数,利用此四季模型反演上海市PM_(10)浓度具有较高的可信度。  相似文献   

19.
蔡敏  严明良  包云轩 《气象科学》2018,38(5):648-658
为了探明PM_(2.5)中水溶性无机离子的来源和气象因子对其浓度变化的影响,利用2012年2、5、8和11月苏州市PM_(2.5)中水溶性无机离子浓度和本站气象观测数据,分析了苏州市水溶性无机离子的时间变化特征,解析了当地PM_(2.5)中水溶性无机离子的主要来源,探讨了气象因素对离子组分的影响。结果表明:(1)苏州市PM_(2.5)中水溶性无机离子年均浓度大小依次为:SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-K~+Ca~(2+)Mg~(2+)F~-;SO_4~(2-)、NH_4~+和NO_3~-为PM_(2.5)中最重要的3种水溶性无机离子物种,其总和占PM_(2.5)总质量浓度的50.9%。各离子的季节浓度特征均为冬季最高、夏季最低。(2)通过运用主成分分析法对苏州市PM_(2.5)中水溶性无机离子进行来源分类解析,发现第一类为二次污染源和生物质燃烧,其贡献率为32.84;第二类为道路扬尘及工业排放,其贡献率为19.99%;第三类为海盐污染,其贡献率为18.43%。(3)通过水溶性无机离子与气象条件的相关性分析发现,风向、风速和温度与水溶性无机离子浓度的相关性较显著,这三者是颗粒物浓度变化的主要影响因子。(4)利用HYSPLIT后向轨迹模式对外来污染物进入苏州市的轨迹进行聚类分析后发现:因受季风气候影响,苏州市外来污染物的输入路径存在明显的季节性变化特征,其中夏半年输送主径源自海上,冬半年主径源自内陆。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号