首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dike geometries around the well-exposed periphery of the Birnudalstindur igneous centre (SE Iceland) are constrained by moving averages of strike, dip, thickness and dilation by 775 mafic dikes, mapped along three strategically placed transects. On the basis of spatial analysis of dike strikes, a rift-parallel swarm is distinguished from a cross-cutting tri-axial swarm pattern of ‘brown dolerites’ that clearly post-dates the volcano's cone sheet swarm. Dikes are on average orientated at right angles to the lava pile and consequently used to constrain the ‘flexured’ geometry of the host lava pile, subsequently back-rotated to horizontal. This produces two end-member scenarios, which can be tentatively used to evaluate the dynamic formation of Icelandic crust. Dike dilations above a prominent stratigraphical transition into hyaloclastite breccias are markedly lower than in the underlying plateau lava pile, suggesting that vertical dike propagations were inhibited along this density/stress boundary. Lined up with the Birnudalstindur igneous centre, average dike thicknesses decrease towards the axes of both the rift-parallel dike swarm and the rift-perpendicular branch of the tri-axial swarm. This arguably links all dike swarms to the Birnudalstindur igneous centre, even if it remains inconclusive whether rift-parallel dikes fed and/or were injected laterally away from its sub-volcanic magma chamber. It seems more likely that the slightly offset tri-axial swarm of brown dolerites was preferentially emplaced along a peripheral bulge that was created around the ‘down-sagging’ volcano.  相似文献   

2.
The Subvolcanic structure of the central dike swarm associated with the Miocene Otoge ring complex and the Shitara igneous complex, central Japan, has been reconstructed. The central dike swarm was supplied from several aligned magma reservoirs. Flow lineations observed at the margin of the dikes converge towards a region that is regarded as a magma reservoir about 1–2 km below present sea level. The minimum diameter of the magma reservoir corresponds to the width of the central dike swarm, estimated to be about 3–4 km. The inferred magma reservoir of the Otoge ring complex, may have a zoned structure, as suggested by the flow lineations of dikes and the arrangement of cone sheets. Felsic magma occupied the upper part, about 1–2 km below present sea level, and basic magma the lower part, deeper than 2 km. The centre of the Shitara igneous complex is interpreted to be composed of several other shallow magma reservoirs. The distribution pattern in plan view of the central dike swarm is summarized from the frequency of dikes (defined by the number of dikes per kilometre in the direction normal to the trend of the dike swarm) and the variations of the different properties of individual dikes along the dike swarm. It has a plane of symmetry normal to the dike swarm above the magma reservoir. The patterns critical to a general understanding of the dike formation are:
1.  A region of low dike frequency is present above the magma reservoir and a radial dike pattern occurs around the magma reservoir.
2.  From both sides of the magma reservoir, the axes of high dike frequency extend symmetrically along the central zone of the dike swarm.
3.  The number as well as the individual and total thickness of felsic dikes increases towards the magma reservoir.
4.  The number of basic dikes increases towards both sides of the magma reservoir, while the individual thicknesses of basic dikes increase with distance from the magma reservoir.
  相似文献   

3.
Jin  Zhang  Hong-fu  Zhang  Ji-feng  Ying  Yan-jie  Tang  Li-feng  Niu 《Island Arc》2008,17(2):231-241
Abstract The occurrence of the Pishikou mafic dike in the Qingdao region, China provides important constraints on the origin of Late Cretaceous (86–78 Ma) mafic magmatism on the eastern North China craton. The Pishikou mafic dike is distributed in the Cretaceous Laoshan granitoid body, Qingdao region and contains peridotitic and granulitic xenoliths, xenocrysts, and megacrysts. Rocks from the Pishikou mafic dike are basanites and have low SiO2 (< 42 wt%) and Al2O3 (12.5 wt%) contents, and high MgO (> 8 wt%), total alkalis (Na2O + K2O > 4.8 wt%, Na2O/K2O > 1), TiO2 (> 2.5 wt%), CaO (> 9 wt%) and P2O5 (> 1 wt%). In trace element abundances, they are highly enriched in large ion lithophile elements (LILEs) and light rare‐earth elements (LREEs) (ΣREE = 339–403 ppm, (La/Yb)N = 39–42) without high field strength element (HFSE) depletion. These rocks have radiogenic Sr and Pb, and less radiogenic Nd isotopic compositions [(87Sr/86Sr)i > 0.7059, εNd ≈ 2.7–3.8 (206Pb/204Pb)i ≈ 18.0 ± 0.1]. The diagnostic elemental ratios, such as Nb/La, Nb/U, and Nb/Th, are compatible with those of mid‐oceanic ridge basalts (MORBs) and oceanic island basalts (OIBs). Therefore, the Pishikou mafic dike has a geochemical feature completely different from those of the Early Cretaceous mafic dikes from the Qingdao region, but similar to those of back‐arc basalts from the Japan Sea. This geochemical feature suggests that the Pishikou mafic dike was derived from an asthenosphere source, but contaminated by materials from the subducted Pacific slab. The discovery of this mafic dike thus provides a petrological evidence for the contribution of subducted Pacific slab to the Late Cretaceous magmatism in the Qingdao region of the eastern North China craton.  相似文献   

4.
On the northern part of La Gomera there exists a great abundance of trachytic–phonolitic dikes showing a broad diversity in dip and strike. Several methods have been applied in order to separate these dikes in different sets, localise the area from where they derive, and reconstruct the geometry of the swarms. The oldest dikes correspond to a radial swarm dated at 8 Ma. The felsic activity migrated then southwestwards and a second radial swarm and a cone sheet complex were developed between 7.5 and 6.4 Ma ago. The cone sheet complex is 10 km in diameter and shared its centre with that of the second radial structure. The cone sheets exhibit an outward decrease of dip angle whilst every individual sheet maintains a constant inclination. This geometry reflects the existence of an ancient single dome-shaped shallow magma chamber situated some 1650 m below present sea level. The eastern radial swarm represents a felsic episode that could mark the ending of the Lower Old Basalts, the earlier subaerial activity of La Gomera. The two other dike swarms represent a younger episode coeval with the Upper Old Basalts.  相似文献   

5.
The model for the 2000 dike intrusion event between Kozushima and Miyakejima volcano, Japan, was reinvestigated. After the sudden earthquake swarm in Miyakejima volcano, a dike intrusion of large volume was detected by the nationwide GPS network (Geonet). The displacements detected with GPS stations over an area with a radius of about 200 km shows a distribution that is consistent with the dike source being located near Miyakejima volcano.The dike was intruded northwestwards between Miyakejima and the neighboring Kozushima volcano. We searched for the parameters in the models that reproduce the regional displacements due to dike intrusion between Miyakejima and Kozushiima islands. We tested three models, (1) the model with a single dike, (2) the model with a dike and a point dislocation source which represents a creep dislocation source and (3) the model with a dike and a deflation source which represents a magma reservoir. Though all three models can match the horizontal displacements near the source area, model 1 fails to reproduce the regional displacements in the central part of Japan. Both models 2 and 3 can reproduce the regional displacement for horizontal components. Model 3 produces slightly better results than model 2 for vertical components. The balance in the volume budget for models 2 and 3 is also consistent with the observations. These results show that we cannot distinguish between the two models using only GPS observation. As there is no direct evidence for such a large creep or ductile source (corresponds to M7 or more) as proposed in model 2 and the active seismic region migrated back and forth within the linear swarm region, the model with a dike and a deep magma source is preferable. For the deflation point source, we obtained a deflation volume of 1.5 km3 at the depth of 20 km below the dike. An additional ~0.95 km3 of volume loss through caldera collapse and edifice deflation took place at Miyakejima. We conclude that the magma that intruded the dike came in part from below Miyakejima and in part from below the sea floor between Miyakejima and Kozushima, perhaps from reservoirs at the Moho.Editorial responsibility: S Nakada, T Druitt  相似文献   

6.
The Higo metamorphic terrane situated in west-central Kyushu island, southwest Japan, is composed of greenschist- to granulite-facies metamorphic rocks. The southern part of the metamorphic terrane consists mainly of garnet–biotite gneiss and garnet–cordierite–biotite gneiss, and orthopyroxene or cordierite-bearing S-type tonalite with subordinate amounts of hornblende gabbro. Rb–Sr, Sm–Nd and K–Ar isotopic ages for these rocks have been determined here. The garnet–biotite gneiss gives an Sm–Nd age of 227.1 ± 4.9 Ma and a Rb–Sr age of 101.0 ± 1.0 Ma. The hornblende gabbro has an Sm–Nd age of 257.9 ± 2.5 Ma and a K–Ar age of 103.4 ± 1.1 Ma. These age differences of the same samples are due to the difference in the closure temperature for each system and minerals. The garnet-cordierite–biotite gneiss contains coarse-grained garnet with a zonal structure conspicuously distinguished in color difference (core: dark red; rim: pink). Sm–Nd internal isochrons of the garnet core and the rim give ages of 278.8 ± 4.9 Ma (initial 143Nd/144Nd ratio = 0.512311 ± 0.000005) and 226.1 ± 28.4 Ma (0.512277 ± 0.000038), respectively. These ages are close to formation of the garnet core and the rim. It has been previously suggested that the Higo metamorphic terrane belongs to the Ryoke metamorphic belt. But Sr and Nd isotopic features of the rocks from the former are different from those of the Ryoke metamorphic rocks, and are similar to those of the granulite xenoliths contained in the Ryoke younger granite.  相似文献   

7.
Two contacts between Sudbury norite and northwest-trending diabase dikes and two contacts between the overlying micropegmatite and northwest dikes were investigated in order to estimate the depth of burial of the present erosion surface at the time of dike emplacement. A zone of hybrid paleomagnetic direction representing the vectorial sum of an older host component and an intrusion component of decreasing highest blocking temperature and intensity with distance from the intrusion was sought. Subtracting the calculated thermal effect of the intrusion from this highest blocking temperature yields the temperature of the host at the time of magma emplacement. Dividing this host temperature by an estimated paleogeothermal gradient yields the burial depth of the present erosion (or sampling) surface at the time of magma emplacement. Remanence direction in one of the dikes and norite contact zones is not typical for the Sudbury dike swarm of 1250 Ma age, and this contact is not further considered. An earlier published result for a norite-dike contact was reconsidered because of complicated dike geometry and included in this study. In one of the four usable contacts the hybrid zone is represented by three samples, in another by one sample, and in the remaining two only the contact zone width could be used. The final host temperature results are based on 4 individual calculations and show fair consistency with mean values of 287°C (s.d. 13°) and 267°C (s.d. 11°) calculated without and with a correction for viscosity of the host remanence respectively. Using a gradient of 26°C/km for 1250 Ma ago indicates a burial depth of9.5 ± 2km at that time. The fair consistency encourages the use of the method to deduce quantitatively the history of vertical motions of Precambrian terranes, the detail obtained being dependent on the presence of hybrid zones and of intrusions of various ages.  相似文献   

8.
Field evidence indicates that the Trinity peridotite was partially melted during its rise as a part of the upwelling convecting mantle at a spreading center. A SmNd mineral isochron for a plagioclase lherzolite yields an age,T = 427 ± 32 Ma and initialεNd = + 10.4 ? 0.4 which is distinctly higher than that expected for typical depleted mantle at this time. This age is interpreted as the time of crystallization of trapped melt in the plagioclase lherzoliteP-T field. This time of crystallization probably represents the time when the massif was incorporated as a part of the oceanic lithosphere. The SmNd model age of the plagioclase lherzolite totalrock isTCHURNd = 3.4 AE. This suggests that the Trinity peridotite was derived from a mantle that was depleted rather early in earth history. The peridotite contains many generations of pyroxenite dikes and some microgabbro dikes. We report data for two dikes that clearly crosscut the main metamorphic fabric of the peridotite. A microgabbro dike yields a SmNd mineral isochron age ofT = 435 ± 21 Ma andεNd = + 6.7 ? 0.3. A pyroxenite dike yields an initialεNd = + 7.3 ± 0.4. The initialεNd values for the pyroxenite and gabbro dikes are fairly similar to those for the depleted mantle at this time and are distinct from the lherzolite—demonstrating that they are not genetically related. RbSr data do not give any coherent pattern. However, some bounds can be put on initial Sr values ofεSr ? ?21 for the plagioclase lherzolite andεSr ? ?8.7 for the microgabbro dike. It is plausible that the dikes represent cumulates left behind from island arc magmas that rose through the the oceanic lithosphere within the vicinity of a subduction zone. Major and trace elements and SmNd isotopic data indicate a multiple stage history for the Trinity peridotite; a small melt fraction was extracted from an undepleted source ~ 3.4 AE or more ago to produce the proto-lherzolite; a large fraction of melt (~ 12 to 23%) was extracted from the proto-lherzolite to produce the present rock; the lherzolite was then crosscut by dikes from average depleted mantle ~ 0.44 AE ago. The data are compatible with the depleted mantle source being formed very early in earth history. Although most available data indicate that the depleted upper mantle has been relatively well stirred through time, the Trinity data suggest that very ancient Nd isotopic values are preserved and thus chemical and physical heteorgeneities are sometimes preserved in the depleted source of mid-ocean ridge basalts as well as the oceanic lithosphere which they intrude.  相似文献   

9.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

10.
An earthquake swarm struck the North Tanzania Divergence, East African Rift over a 2 month period between July and September 2007. It produced approximately 70 M > 4 earthquakes (peak magnitude Mw 5.9), and extensive surface deformation, concurrent with eruptions at the nearby Oldoinyo Lengai volcano. The spatial and temporal evolution of the entire deformation event was resolved by Interferometric Synthetic Aperture Radar (InSAR) observations, owing to a particularly favorable acquisition programming of the Envisat and ALOS satellites, and was verified by detailed ground observations. Elastic modeling based on the InSAR measurements clearly distinguishes between normal faulting, which dominated during the first week of the event, and intermittent episodes of dike propagation, oblique dike opening and dike-induced faulting during the following month. A gradual decline in the intensity of deformation occurred over the final weeks. Our observations and modeling suggest that the sequence of events was initiated by pressurization of a deep-seated magma chamber below Oldoinyo Lengai which opened the way to lateral dike injection, and dike-induced faulting and seismicity. As dike intrusion terminated, silicate magma ascended the volcano conduit, reacted with the carbonatitic magma, and set off a major episode of explosive ash eruptions producing mixed silicate-carbonatitic ejecta. The rise of the silicate magma within the volcano conduit is attributed to bubble growth and buoyancy increase in the magma chamber either due to a temporary pressure drop after the termination of the diking event, or due to the dynamic effects of seismic wave passage from the earthquake swarm. Similar temporal associations between earthquake swarms and major explosive ash eruptions were observed at Oldoinyo Lengai over the past half century.  相似文献   

11.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

12.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

13.
Widespread dike swarm, including diorite-, monzonite-porphyry and lamprophyre, intruded in the al- tered breccia gold deposits along basin marginal faults, Guocheng, Jiaodong Peninsula. Petrography exhibits biotite enclaves in amphibole phenocrysts and the presence of acicular apatites in these dikes. Electron probe microanalyses (EPMA) show that the amphibole and clinopyroxene phenocryst’s mantle in diorite porphyry and lamprophyre respectively has sharply higher MgO (Mg#) and Cr2O3 contents in contrast to their cores. The plagioclase phenocryst in monzonite porphyry has reverse zoning. These results indicate that the magma mixing between mantle-derived mafic and crust-derived felsic magmas occurred in the original process of the dikes. Zircon cathodoluminescence (CL) images show well-developed magmatic oscillatory zones and the acquired LA-ICP-MS zircon U-Pb weighted mean 206Pb/238U ages are 114±2 Ma (MSDW=1.5) for monzonite porphyry (GS1) and 116±1 Ma (MSDW=0.8) for diorite porphyry (GS2), respectively. Earlier magmatic events in the northwest Jiaodong Peninsula represented by some inherited or captured zircons also occur in these dikes. Magmatic zircons from GS1 and GS2 display consistent chondrite-normalized REE patterns and Nb/Ta values, implying that they may share a similar or same source. HREE enrichment and obvious negative Eu anomalies of these zircons preclude garnet presented in their source. Our results, combined with preciously pub- lished data, indicate that dike intrusion and gold mineralization among quartz vein, altered tectonite and altered breccia gold deposits are broadly contemporaneous throughout the Jiaodong Peninsula. These also imply that the intensive crust-mantle interaction and asthenospheric underplating had oc- curred in the Early Cretaceous in the Peninsula, together with foundering of lower crust in the early Mesozoic, representing the different stages of lithosphere thinning in the North China Craton (NNC).  相似文献   

14.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

15.
Abstract Rb–Sr and K–Ar chronological studies were carried out on granitic and metamorphic rocks in the Ina, Awaji Island and eastern Sanuki districts, Southwest Japan to investigate the timing of intrusion of the granitoids in the Ryoke belt. Intrusions of 'younger' Ryoke granitic magmas took place in the Ina district between 120 Ma and 70 Ma, and cooling began immediately after the emplacement of the youngest granitic bodies. Igneous activity in Awaji Island was initiated at 100 Ma and continued to 75 Ma. Along-arc variations of Rb–Sr whole-rock isochron ages suggest that magmatism began everywhere in the Ryoke and San-yo belts at almost the same time ( ca 120 Ma). The last magmatism took place in the eastern part of both belts. Rb–Sr and K–Ar mineral ages for the granitoids young eastwards. The age data suggest that the Ryoke belt was uplifted just after the termination of igneous activity. Initial Sr and Nd isotopic ratios for the Ryoke granitoids indicate that most were derived from magmas produced in the lower crust and/or upper mantle with uniform Sr and Nd isotopic compositions. Several granitoids, however, exhibit evidence of assimilation of Ryoke metamorphic rocks or older Precambrian crustal rocks beneath the Ryoke belt.  相似文献   

16.
新疆库鲁克塔格新元古代花岗岩年龄和地球化学   总被引:3,自引:0,他引:3  
本文报道了新疆塔里木北缘库鲁克塔格地区新元古代孤山岩体(或太阳岛岩体)的岩石学、锆石U-Pb年龄及地球化学组成。研究表明:该岩体主要由英云闪长岩、奥长花岗岩及正长花岗岩组成,结晶的时间为795 Ma。其地球化学特征表现为富Na、LREE、LILE及亏损HREE、HFSE,因此具有高的(La/Yb)N及Sr/Y比值,与现代的艾达克岩相似。然而该岩体具有低的Nd初始值及太古代的Nd模式年龄,因此推测其岩浆来自太古代基性下地壳的重熔。鉴于在库鲁克塔格地区发育有800 Ma左右的蛇绿岩,因此我们推测该岩体是碰撞造山引起的加厚的下地壳重熔的结果,代表了塔里木地块前寒武纪基底的最终形成。  相似文献   

17.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   

18.
Abstract Miyanohara tonalite occurs in the middle part of the Higo metamorphic belt in the central Kyushu, Southwest Japan. This tonalite intrudes into early Permian Ryuhozan metamorphic rocks in the south and is intruded by Cretaceous Shiraishino granodiorite in the north. The Miyanohara tonalite yielded three mineral ages: (i) 110–100 Ma for Sm–Nd and Rb–Sr internal isochrons and for K–Ar hornblende; (ii) 183 Ma for Sm–Nd internal isochron; and (iii) 211 Ma for Sm–Nd internal isochron. The ages of 110–100 Ma may indicate cooling age due to the thermal effect of the Shiraishino granodiorite intrusion. The ages of 183 Ma and 211 Ma are consistent with timing of intrusion of the Miyanohara tonalite based on geologic constraints. The hornblende in the sample which gave 183 Ma shows discontinuous zoning under microscope, whereas the one which gave 211 Ma does not show zonal structure. These mineralogical features suggest that the 183 Ma sample has suffered severely from later tectonothermal effect compared with the 211 Ma sample. Therefore, the age of 211 Ma is regarded as near crystallization age for the Miyanohara tonalite. The magmatic process, geochronology and initial Sr and Nd isotope ratios for the Miyanohara tonalite are similar to those of early Jurassic granites from the Outer Plutonic Zone of the Hida belt that constitutes a marginal part of east Asia before the opening of the Japan Sea. Intrusion of the Miyanohara tonalite is considered to have taken place in the active continental margin during the late Triassic.  相似文献   

19.
Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east–west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50–60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.  相似文献   

20.
Once a mafic intrusive rock has become altered, it is generally difficult to obtain a reliable intrusion age using conventional isotopic dating methods. To overcome this problem, this study used zircon fission track (ZFT) thermochronometry to determine the timing of crystallization of altered mafic intrusions. ZFT dating was carried out on samples of baked granite country rock adjacent to dolerite dikes (5–10 m thick) in the Takato area of central Japan. Three granite samples collected within 8 mm of a dike contact yielded consistent ZFT ages of 17–16 Ma, with confined track lengths indicative of the complete annealing of pre‐existing tracks by reheating due to dike intrusion. An older ZFT age was obtained for one granite sample collected within 20 mm of the contact, but confined track length measurements indicate that this is an incompletely reset age that lies between the ZFT age of the unbaked granitic country rocks (ca. 55 Ma) and the emplacement age of the dike. Petrographic examinations suggest that post‐intrusion hydrothermal activity did not influence the ZFT ages. We conclude that the 17–16 Ma ZFT age represents the emplacement age of the dikes. Our results show that ZFT dating of baked country rock is an effective tool for dating altered mafic intrusions, for which other dating techniques are not applicable. In the eastern part of Southwest Japan, dispersed volcanic activity occurred in the late Early to early Middle Miocene (18–15 Ma), and the volcanic belt extended into the forearc. This pulse of activity was possibly related to the injection of asthenospheric material into the trench‐side mantle wedge beneath the Japan arc. We also present young apatite fission track ages (ca. 4 Ma) that may reflect a Middle Miocene or later thermal event associated with local magmatic activity near the Takato area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号