首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   

2.
Fallout radionuclides (FRNs) 137Cs and 210Pb are well established as tracers of surface and sub‐surface soil erosion contributing sediment to river systems. However, without additional information, it has not been possible to distinguish sub‐surface soil erosion sources. Here, we use the FRN 7Be (half‐life 53 days) in combination with 137Cs and excess 210Pb to trace the form of erosion contributing sediment in three large river catchments in eastern Australia; the Logan River (area 3700 km2), Bowen River (9400 km2) and Mitchell River (4700 km2). We show that the combination of 137Cs, excess 210Pb and 7Be can discriminate horizontally aligned sub‐surface erosion sources (rilled and scalded hillslopes and the floors of incised drainage lines and gully ‘badland’ areas) from vertical erosion sources (channel banks and gully walls). Specifically, sub‐surface sources of sediment eroded during high rainfall and high river flow events have been distinguished by the ability of rainfall‐derived 7Be to label horizontal soil surfaces, but not vertical. Our results indicate that in the two northern catchments, erosion of horizontal sub‐surface soil sources contributed almost as much fine river sediment as vertical channel banks, and several times the contribution of hillslope topsoils. This result improves on source discrimination provided previously and indicates that in some areas erosion of hillslope soils may contribute significantly to sediment yield, but not as topsoil loss. We find that in north‐eastern Australia, scalded areas on hillslopes and incising drainage lines may be sediment sources of comparable importance to vertical channel banks. Previous studies have used the combination of 137Cs, excess 210Pb and 7Be to estimate soils losses at the hillslope scale. Here, we show that with timely and judicious sampling of soil and sediment during and immediately after high flow events 7Be measurements can augment fallout 137Cs and 210Pb to provide important erosion source information over large catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Gully erosion is an environmental problem recognized as one of the worst land degradation processes worldwide. Insight into regional gully perturbations is required to combat the serious on- and off-site impacts of gullying on a catchment management scale. In response, we intersect different perspectives on gully erosion-specific views in South Africa (SA), a country that exhibits various physiographic properties and spans 1.22 million km2. While the debate surrounding gully origin continues, there is consensus that anthropogenic activities are a major contemporary driver. The anthropogenic impact caused gullying to transcend climatic, geomorphic, and land-use boundaries, although it becomes more prominent in central to eastern SA. Soil erodibility plays a crucial role in what extent of gully erosion severity is attained from human impact, contributing to the east–west imbalance of erosion in SA. Soil erosion rates from gullying and badlands are limited but suggest that it ranges between 30 and 123 t ha−1 yr−1 in the more prominent areas. These soil loss rates are comparable to global rates where gullying is concerned; moreover, they are up to four orders of magnitude higher than the estimated baseline erosion rate. On a national scale, the complexity of gullying is evident from the different temporal timings of (re)activation or stabilizing and different evolution rates. Continued efforts are required to understand the intricate interplay of human activities, climate, and preconditions determining soil erodibility. In SA, more medium- to long-term studies are required to understand better how changing control factors affect gully evolution. More research is needed to implement and appraise mitigation measures, especially using indigenous knowledge. Establishing (semi)-automated mapping procedures would aid in gully monitoring and assessing the effectiveness of implemented mitigation measures. More urgently, the expected changes in climate and land-use necessitate further research on how environmental change affects short-term gully erosion dynamics.  相似文献   

4.
The Stavropol region of southern Russia is severely affected by human‐induced gully erosion. A lack of detailed information on the different stages of gully formation resulting from major agricultural expansion c. 100 years ago, is an obstacle for management and containment of these systems. In this study we combine measurements of particle‐bound radionuclides (137Cs, 210Pbex, 226Ra, 232Th and 40K) and classical geomorphology to investigate and reconstruct the different phases of development of a gully during the last c. 100 years. We believe the ?rst phase (1) involved an initial incision into the bottom of a small valley (catchment area c. 1 km2) about 100 years ago. A short period of rapid growth was followed by a longer stage of gully stabilization. Subsequent phases were: (2) the period 1954–1960 – re‐incision in the lower gully reach was initiated by a high‐magnitude rainfall event, and a substantial amount of sediment was delivered to the gully fan; (3) c. 1960–1986 – the knickpoint retreated slowly, sediment was redeposited nearby, and the fan surface became stable; (4) 1986–1987 – a dam was built in the gully mouth and breached shortly after construction following 2 days of high rainfall, and substantial sediment accumulated in the gully above the dam and below the spillway channel on the fan surface; (5) 1987–1993 – the knickpoint retreat continued and the lower fan surface was stable until 1993 when the last signi?cant runoff event overlayed it with c. 10 cm of fresh sediment. These detailed reconstructions of gully development stages allow the contribution of high‐magnitude events to gully growth and regional sediment delivery to be assessed. They further guide management actions to prevent such dam failures in the future. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
In contrast to much previous research on blanket peat moorland, which has concentrated upon studies of the form and causes of gully erosion, this paper attempts to investigate sediment transport and to estimate both short-term and long-term sediment yields in such terrain. The research was conducted on Wessenden Head Moor to the west of Huddersfield, Yorkshire, where automatic stream sampling continued over a period of two years. Use of corrected rating curves (Ferguson, 1988) provided a mean estimate of sediment yield over this period of 55 t km?2 yr?1. In addition an estimate of longer-term sediment yield was derived from four reservoir sediment surveys in the Wessenden Valley. Total yield was 203.69 t km?2 yr?1, including an organic fraction of 38.82 t km ?2 yr?1. Stream sampling at three sites on Shiny Brook, including headwaters and the outflow to the reservoir, suggested that there is great temporal and spatial variability in mineral and organic inputs to the reservoirs. Although not excessive in gravimetric terms, the low density of peat means that there is a serious erosion problem. Estimates of erosion rates for the peat gully network at Shiny Brook appear to confirm earlier evidence concerning the relatively recent occurrence of this erosion, within the last two centuries.  相似文献   

6.
A three year monitoring programme of gully‐head retreat was established to assess the significance of sediment production in a drainage network that expanded rapidly by gully‐head erosion on the low‐angled alluvio‐lacustrine Njemps Flats in semi‐arid Baringo District, Kenya. This paper discusses the factors controlling the large observed spatial and temporal variation in gully‐head retreat rates, ranging from 0 to 15 m a?1. The selected gullies differed in planform and in runoff‐contributing catchment area but soil material and land use were similar. The data were analysed at event and annual timescales. The results show that at annual timescale rainfall amount appears to be a good indicator of gully‐head retreat, while at storm‐event timescale rainfall distribution has to be taken into account. A model is proposed, including only rainfall (P) and the number of dry days (DD) between storms: which explains 56 per cent of the variation in retreat rate of the single‐headed gully of Lam1. A detailed sediment budget has been established for Lam1 and its runoff‐contributing area (RCA). By measuring sediment input from the RCA, the sediment output by channelized flow and linear retreat of the gully head for nine storms, it can be seen that erosion shifts between different components of the budget depending on the duration of the dry period (DD) between storms. Sediment input from the RCA was usually the largest component for the smaller storms. The erosion of the gully head occurred as a direct effect of runoff falling over the edge (GHwaterfall) and of the indirect destabilization of the adjacent walls by the waterfall erosion and by saturation (GHmass/storage). The latter component (GHmass/storage) was usually much larger that the former (GHwaterfall). The sediment output from the gully was strongly related to the runoff volume while the linear retreat, because of its complex behaviour, was not. Overall, the results show that the annual retreat is the optimal timescale to predict retreat patterns. More detailed knowledge about relevant processes and interactions is necessary if gully‐head erosion is to be included in event‐based soil erosion models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Although there is much evidence of intense soil erosion in cultivated areas of Navarre (Spain), information on it is currently scarce. Rill and ephemeral gully volumes can be used as a guide to minimum erosion rates. With the main purpose of determining the annual soil loss rates in cultivated areas of central Navarre, a detailed assessment of rainfall and of rill and gully erosion was made in 19 small catchments from October 1999 to September 2001. Seventeen of them were randomly selected, and were cultivated with winter cereals, vineyards or sunflowers. The other two catchments were selected to represent partially uncultivated lands abandoned for ten years. Channel cross‐sections were measured by using a 1‐m‐wide micro‐topographic profile meter, describing 632 cross‐sections and processing information from 31 600 pins. Erosive events happened every year in the three study areas. For cereal catchments, soil losses occurred in only one or two rainfall events each year, usually at the end of autumn and in some summers, with high erosion rates (0·20–11·50 kg m?2 a?1). In vineyards, soil losses occurred several times per year, and in any season. This is attributed to the small percentage of surface covered by the crop throughout the year. Again, high erosion rates were found (0·33–16·19 kg m?2 a?1), with ephemeral gully erosion causing more loss than rill erosion. No‐till is proposed as an effective conservation measure. From this large data set, it can be stated that rill erosion and ephemeral gully erosion are widespread in Mediterranean regions, and that much more attention should be paid to the problem. Abandoned fields showed very high erosion rates (16·19 kg m?2 a?1 on average), suggesting that the abandonment of marginal lands without implementing any erosion control can lead to severe erosion rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Gullies form easily on unpaved road surfaces during heavy rainstorms on China's Loess Plateau. The integrated effect of rainfall, topography, vegetation, land use, and other factors determines where and when gully erosion occurs; however, the mechanisms driving gully erosion on unpaved road surfaces need to be further understood. Repeated gully erosion on some roads during the storm season provides a good opportunity to better understand the mechanisms behind gully erosion. This article aimed to quantify the integrated threshold conditions required for gully initiation in terms of topography, event rainfall, and upslope land use, and to propose an event-based model to predict the position and magnitude of road gully erosion. Rill and gully erosion on unpaved roads were investigated after an extreme rainstorm of 212.2 mm in 2017 and a regular rainstorm of 83.8 mm in 2018. A digital surface model (DSM) derived from unmanned aerial vehicle (UAV) images was used to analyze the road gradient (S) and upslope area (A). The runoff (QRS) of each road segment (RS) was estimated by the runoff curve number method. The results showed the following: (1) The mean and total gully volumes under the regular rainstorm were only 26.3% and 8.1% of those under the extreme rainstorm, respectively; (2) Gully formation on the surveyed roads under both the regular and the extreme rainstorm could be explained by the threshold relationship (S − 0.056)QRS3.363 ≥ 72.444; and (3) A non-linear relationship between gully erosion in road segments and event runoff (QRS) and road gradient (S) was found, and was subsequently used to predict road gully erosion on an event basis.  相似文献   

10.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

12.
13.
The objective of this study is to explore in a critical way the potential of high-altitude (stereo) aerial photographs for the assessment of ephemeral gully erosion rates. On 28 May 1995, an intensive rainfall event (30 mm h−1 during 30 min, return period = 3 years) occurred in central Belgium. Ephemeral gullies formed within an area of 218 ha (study area 1) were mapped and measured both in the field and by high-altitude aerial photos taken at the same time. Comparison of these two methods shows that if only one of the two surveying techniques had been used, only 75 per cent of the total ephemeral gully length would have been detected, so that the combination of aerial and field data leads, in fact, to the best possible determination of total gully length within the selected area. A correction factor (C) is proposed, so that the results of an ephemeral gully erosion survey based on high-altitude (stereo) aerial photos can be adjusted for the undetected gullies. Next, a sequential series of high-altitude stereo aerial photographs, taken in six different years, was analysed in order to determine ephemeral gully erosion rates in three selected study areas (study areas 2, 3 and 4). Selection criteria were chosen so that these three areas were similar to study area 1 and representative for the cultivated areas in central Belgium where intense soil erosion regularly occurs. Ephemeral gullies were mapped and their total length was measured from the aerial photos. Using a mean gully cross-section of 0·2635 m2 (determined in study area 1), the average eroded volume is 1·89 m3 ha−1 in six months for study area 1, 0·86 m3 ha−1 in six months for area 2, 1·44 m3 ha−1 in six months for area 3, and 2·37 m3 ha−1 in six months for area 4. According to the correction factor (C), these mean ephemeral gully erosion volumes have to be increased by 44 per cent. The ephemeral gully erosion rates based on high-altitude stereo aerial photos, correspond well with the results of other surveys carried out in the Belgian loess belt. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Land degradation in South Africa has been of concern for more than 100 years with both climate change and inappropriate land management (overgrazing) being proposed as primary drivers. However, there are few quantitative studies of degradation and, in particular, few of erosion by water. Badlands, taken here to be the landform which results from extreme erosion, have been notably neglected. We report on 13 consecutive years of erosion pin measurements of badland erosion on 10 study sites in the Sneeuberg uplands of the eastern Karoo in South Africa. The study sites are on Holocene colluvium which mantles footslopes. They have been subject to overgrazing for at least 100 years, c. 1850–1950. Currently they are lightly grazed by sheep. The area receives about 500 mm rainfall per year. The sites are remote, with only informal, farmer‐operated, daily raingauges nearby. The nearest sub‐daily raingauge is c. 55 km distant. Also we report on an analysis of the erosion pin data which focuses on establishing the origins and context of the badlands, including the relationship between study sites and adjacent valley‐bottom gully systems; compare erosion rates on our study sites with rates determined by erosion pins on other badland sites; and discuss the implications of these erosion rates for landscape development and off‐site impacts. Net erosion rates on the study sites are relatively high compared with global badland rates and range from 3.1 to 8.5 mm yr‐1 which may be extrapolated to 53 to 145 t ha yr‐1 (using a measured bulk density of 1.7 g cm‐3). However, comparisons with badland sites elsewhere are difficult because of different measuring methodologies, lithologies, climate and dominant processes. Erosion rates on the study sites are strongly influenced by rainfall amounts and, in particular, by daily rainfall events which exceed ~10 mm: this is the threshold intensity at which runoff has been observed to commence on badlands. Of significance, but of lesser influence, is weathering, mainly by wetting and drying: this prepares bare surfaces for erosion. However, questions remain regarding the role of site characteristics, and of processes at each site, in determining between‐site differences in erosion rate. Crude extrapolation of current rates of erosion, in conjunction with depths of incision into the badlands, suggests that badland development started around 200 years ago, probably as a response to the introduction of European‐style stock farming which resulted in overgrazing. We assume, but cannot quantify, the additional influence of periods of drought and burning in the erosional history of the area. Intermittent connection of these badlands to valley‐bottom gullies and therefore to small farm dams and ultimately to large water storage reservoirs increases their impact on local water resources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Climate change is expected to effect storm runoff and erosion processes in Mediterranean watersheds at multiple spatial scales. Models are typically applied to estimate these impacts; however, the scarcity of spatially distributed data for parameterization, calibration and validation often prevents application of these models, particularly for larger catchments. This report, the first part of a two‐part article, presents an application and evaluation of the MEFIDIS model for two Mediterranean meso‐scale watersheds (115 and 290 km2) in a data‐scarce environment. A multi‐scale assessment method was used that combines quantitative validation and qualitative evaluation, consisting of three steps: (1) calibration at the small (field) scale using results from rainfall simulation experiments; (2) calibration and validation for catchment‐scale results while changing catchment‐scale parameters only (channel roughness and a parameter controlling the distribution of saturated areas); and (3) qualitative evaluation of within‐watershed erosion processes using empirical estimates of sediment delivery ratio and gully location. The results indicate that calibrating MEFIDIS at the field scale can provide reasonable results for catchment runoff and sediment export and for within‐watershed erosion processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   

18.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Recent studies in the Mediterranean area have shown gully erosion to have a very significant contribution to total soil loss. In the Penedès vineyard region (NE Spain), between 15 and 27% of the land is affected by large gullies and gully‐wall retreat seems to be an ongoing process. Multi‐date digital elevation model (DEM) analysis has allowed computation of sediment production by gully erosion, showing that the sediment production rates are very high by the, up‐to‐date, usual global standards. Here, we present a study carried out using large‐scale multi‐date (1975 and 1995) aerial photographs (1 : 5000 and 1 : 7000) to monitor sediment yield caused by large gullies in the Penedès region (NE Spain). High‐resolution DEMs (1 m grid) were derived and analysed by means of geographical information systems techniques to determine the gully erosion rates. Rainfall characteristics within the same study period were also analysed in order to correlate with the soil loss produced. Mass movement was the main process contributing to total sediment production. This process could have been favoured by rainfalls recorded during the period: 58% of the events were of an erosive character and showed high kinetic energy and erosivity. A sediment production rate of 846 ± 40 Mg ha?1 year?1, a sediment deposition rate of 270 ± 18 Mg ha?1 year?1 and a sediment delivery ratio of 68·1% were computed for a gully area of 0·10 km2. The average net erosion within the study period (1975–95) was 576 ± 58 Mg ha?1 year?1. In comparison with other methods, the proposed method also includes sediment produced by processes other than only overland flow, i.e. downcutting, headcutting, and mass movements and bank erosion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
In the region of the basaltic plateau in Southern Brazil, problems of runoff and erosion on the deep ferrallitic soils are becoming increasingly recognized. Land use change from conventional tillage using disk plough to no‐tillage on residues without terracing occurred at the beginning of the 1990s and it spread very quickly. Measurements of runoff and sediment concentrations on 1 m2 plots receiving natural rainfall and simulated rainfall under different crops with different stages of growth and different tillage systems, field surveys and measurements of rills and gullies in nested experimental catchments indicate a relative decrease of runoff on slopes but an increase of subsurface flow, and a marked decrease of sheet and rill erosion and soil loss from plot to catchment scales. Nevertheless, the extension of parts of the gully system is still continuing, strongly influenced by extreme rainfall. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号