首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国与印度夏季风降水的比较研究   总被引:37,自引:0,他引:37  
本文用1951—1980年中国和印度的降水资料研究了两个地区在西南季风时期(6—9月)总雨量变化的关系。发现印度的雨量变化与中国各地雨量的相关关系有正、有负,最明显的是印度中西部与我国华北地区有较高的正相关。进一步对两个地区降水存在遥相关的原因进行了分析,发现南亚次大陆低压是联系两个季风区雨量变化的重要环节。中国季风雨量与印度季风雨量的相关趋势,主要决定于中国各地雨量与东亚夏季风强度的关系。   相似文献   

2.
500 hPa ridge positions over the Indian and the West Pacific regions during April are related with the summer monsoon rainfall over India. The ridge position over the Indian region shows better relation with monsoon rainfall than that shown by the ridge over the Pacific region. The multiple correlation of these ridge positions with monsoon rainfall exceeds 0.7. These predictive relationships are better than those shown by other parameters, viz. (1) Northern Hemispheric surface temperature; (2) East-Pacific sea surface tempera-ture; (3) El-Nino events and (4) Tahiti-Darwin pressure difference, and index of southern oscillation, over the 30-year samples analysed.  相似文献   

3.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

4.
徐志清  范可 《大气科学》2012,36(5):879-888
印度洋热力状况是影响全球气候变化和亚洲季风变异的一个重要的因素,但以往研究更多关注热带印度洋海温的变化,对南印度洋中高纬地区海温变化关注不够,由此限制了我们对印度洋的全面认识.本文研究了年际尺度上整个印度洋海温异常主导模态的特征及其对我国东部地区夏季降水的可能影响过程,以期望为气候变异研究及预测提供理论依据.研究结果表明:全印度洋海温异常年际变率的主导模态特征是在南印度洋副热带地区海温异常呈现西南—东北反向变化的偶极子模态,西极子位于马达加斯加以东南洋面,东极子位于澳大利亚以西洋面;同时,热带印度洋海温异常与东极子一致.当西极子为正的海温异常,东极子、热带印度洋为负异常时定义为正的印度洋海温异常年际变率模态;反之,则为负的印度洋海温异常年际变率模态.从冬至春,印度洋海温异常年际变率模态具有较好的季节持续性;与我国长江中游地区夏季降水显著负相关,而与我国华南地区夏季降水显著正相关.其可能的影响过程为:对于正的冬、春季印度洋海温异常年际变率模态事件,印度洋地区异常纬向风的经向大气遥相关使得热带印度洋盛行西风异常,导致春、夏季海洋性大陆对流减弱,使夏季西太平洋副热带高压强度偏弱、位置偏东偏北,造成华南地区夏季降水增多,长江中游地区降水减少;反之亦然.同时,印度洋海温异常年际变率模态可通过改变印度洋和孟加拉湾向长江中游地区的水汽输送而影响其夏季降水.  相似文献   

5.
Summary The relationships between the El-Niño phenomenon and the planetary-scale waves, and the interannual variations in the Indian monsoon (June–September) rainfall have been analysed in order to investigate how the sea surface temperature (SST) in the equatorial eastern Pacific associated with the El-Niño can produce reduced monsoon rainfall over India by teleconnections.The longitude of ridge location over the Indian region of the integrated planetary waves (numbers 1–3) along 15° N latitude circle in the height field of 200 mb pressure level in May is significantly (r=0.93, significant at 98% CL) related to the May SST anomaly at Puerto Chicama. This implies that warmer (colder) SST anomalies are associated with eastward (westward) longitude of the ridge location. The variations of the ridge location in May appear to be significantly inversely (r=–0.95, significant at 99% CL) related to the Indian monsoon rainfall, with rainfall tending to be less (more) than normal during eastward (westward) longitude of the ridge location suggesting some predictive value for the Indian monsoon rainfall. The Indian monsoon rainfall and May SST anomaly at Puerto Chicama are inversely related (r=–0.90, significant at 96% CL).In terms of the observed relationships, a plausible mechanism for linking El-Niño with the reduced Indian monsoon rainfall is discussed. The relationships noted suggest that excessive warm SST anomalies associated with El-Niño induce an eastward shift in the planetary waves which in turn reduce the Indian monsoon rainfall.With 8 Figures  相似文献   

6.
Summary In 2002, India had experienced one of the most severe droughts. The severe drought conditions were caused by the unprecedented deficient rainfall in July 2002, in which only 49% of the normal rainfall was received. One of the major circulation anomalies observed during July 2002, was the active monsoon trough over Northwest (NW) Pacific and enhanced typhoon activity over this region. The present study was designed to examine the long-term relationships between Tropical Cyclone (TC) activity over NW Pacific and monsoon rainfall over India in July. A statistically significant negative correlation between TC days over NW Pacific and July rainfall over India was observed. Spatial dependence of the relationship revealed that TCs forming over NW Pacific east of 150° E and moving northwards have an adverse effect on Indian monsoon rainfall. It was observed that TCs forming over the South China Sea and moving westwards may have a positive impact on monsoon rainfall over India. Enhanced TC activity over NW Pacific during July 2002 induced weaker monsoon circulation over the Indian region due to large-scale subsidence.  相似文献   

7.
广西夏季降水的多时间尺度特征及影响因子   总被引:1,自引:1,他引:0       下载免费PDF全文
利用1951—2011年广西夏季降水站点资料和NCEP/NACR等多种再分析资料,通过相关分析、经验模态分解、统计检验分析了广西夏季降水的多时间尺度特征及其影响因子,利用多元线性回归方法对夏季降水进行拟合和预测试验。结果显示:广西夏季降水具有多时间尺度特征,不同时间尺度对应着环流因子不同时间尺度的分量;在准2年尺度上,主要影响因子为季风槽、低空急流、高空急流、贝加尔湖高度场、南印度洋东部海温。利用对广西夏季降水影响显著的环流因子本征模态函数分量和多元线性回归方法拟合夏季降水,相关系数为0.73,表明广西夏季降水是环流因子多时间尺度共同作用的结果。利用前期冬季南印度洋东部海温异常本征模态函数作为前兆因子预报广西夏季降水,6个独立样本检验显示预测与实况趋势一致,该工作可供利用多时间尺度信息进行区域气候预测参考。  相似文献   

8.
利用珠穆朗玛峰地区定日气象站1959—2009年气象探测资料,分析了珠穆朗玛峰地区的降水、气温、高空风等气象要素变化特征并重点总结珠穆朗玛峰地区主要登山期(春季)成功登顶的天气、气候背景及大气环流形势。结果表明,5月500 hPa环流中高纬度为宽广的低值区,乌拉尔山地区基本维持长波槽或低值中心,咸海—里海和贝加尔湖附近多存在脊区;伊朗高压偏北且东伸至印度半岛,印度副热带高压与咸海、里海附近高压脊同位相叠加且北抬加强,西太平洋副热带高压维持在中南半岛以西;孟加拉湾、印度半岛低槽或低压中心建立,高原南部南支槽不明显;东亚大槽偏强、偏东。对应西藏高原和珠穆朗玛峰地区降水偏弱等特征,5月是攀登珠穆朗玛峰的最佳时机,且20时至凌晨之间更适合登顶。  相似文献   

9.
Summary The influence of the Indian Ocean Zonal Mode on the extreme summer monsoon rainfall over East Asia (China, Korea, Japan) has been investigated applying simple statistical techniques of correlation and composite analysis. While the observed rainfall data are used as a measure of rainfall activity, the NCEP-NCAR Reanalysis data are used to examine the circulation features associated with the extreme monsoon phases and the dynamics of the zonal mode – monsoon variability connections. The data used covers the period 1960 to 2000.The equatorial Indian Ocean is dominated by westerly winds blowing towards Indonesia. However, during the positive phase of the zonal mode, an anomalous, intensified easterly flow prevails, consistent with the positive (negative) sea surface temperature anomalies over the western (southeastern) equatorial Indian Ocean. This positive phase of the zonal mode enhances summer monsoon activity over China, but suppresses the monsoon activity over the Korea-Japan sector, 3 to 4 seasons later. The relationship is more consistent and stronger over the Korea-Japan region than over China.The Indian Ocean influences the monsoon variability over East Asia via the northern hemisphere mid-latitudes or via the eastern Indian Ocean/west Pacific route. The monsoon-desert mechanism induces strong subsidence northwest of India due to the anomalous convection over the Indian Ocean region associated with the positive phase of the zonal mode. This induces a zonal wave pattern over the mid-latitudes of Asia propagating eastwards and displacing the north Pacific subtropical high over East Asia. The warming over the eastern Indian Ocean/west Pacific inhibits the westward extension of the north Pacific sub-tropical high. The location and shape of this high plays a dominant role in the monsoon variability over East Asia. The memory for delayed impact, three to four seasons later, could be carried by the surface boundary conditions of Eurasian snow cover via the northern channel or the equatorial SSTs near the Indonesian Through Flow via the southern channel.  相似文献   

10.
In the early 1980s, Chinese meteorologists discovered the positive correlation in summer rainfall between India and North China and the correlation was later confirmed by some researches in and outside China. Based on a variety of meteorological data from 1951 to 2005 and numerical simulations, the present study investigates such a correlation between Indian summer monsoon (ISM) and precipitation in North China. Furthermore, we discuss the intrinsic relations of the positive (Northwest India)-negative (the Tibetan Plateau)-positive (North China) precipitation anomaly teleconnection pattern from two aspects of thermal and dynamical factors, which not only confirms the precipitation teleconnection previously discovered again, but also reveals the influence mechanism of the ISM on the rainfall in North China. The results show that: (1) When the ISM is strong (weak), the precipitation in North China tends to be more (less) than normal; however, when the rainfall in North China is more (less) than normal, the probability of the strengthening (weakening) of the ISM is relatively lower. This implies that the ISM anomaly has more impact on the rainfall in North China. (2) The Indian low usually dominantly impacts the intensity of the ISM. When the Indian low deepens, the low troughs in mid-high latitudes are frequently strengthened, and the ridge of the western Pacific subtropical high (WPSH) extends westward. The southwesterly water vapor transport originated from low-latitudes and the southeasterly water vapor transport along the southwestern flank of the WPSH converge in North China, which is favorable for more rainfall there than normal, and vice versa. (3) The simulations from the regional climate model developed by National Climate Center (ReGCM_NCC) capture the salient feature of the precipitation teleconnection between India and North China. The simulated anomalous atmospheric existence of such a teleconnection from another circulations are close to observatio  相似文献   

11.
利用基于拉格朗日方法的气流轨迹模式(HYSPLIT_V4.9),结合轨迹聚类法和气块追踪法,探讨1998年6月12日—8月27日期间长江流域强降雨的水汽输送轨迹、主要水汽源地及其水汽贡献,发现此次强降水过程的水汽源地主要为印度洋、孟加拉湾—南海和太平洋;不同降水阶段水汽输送轨迹、水汽源地存在差异。降水第一阶段水汽主要来自孟加拉湾—南海,水汽输送贡献为35%。降水第二阶段水汽主要由印度洋、孟加拉湾—南海和太平洋三个区域共同提供,水汽输送贡献分别为32%、28%和31%。降水第三阶段则是来自印度洋和孟加拉湾—南海的水汽输送占主导地位,它们对降水的水汽输送贡献分别为33%和41%。降水第四阶段水汽主要来源于孟加拉湾—南海,贡献为40%。强降水过程中大气环流的调整,导致了不同阶段水汽源地的变化及各源地水汽贡献的差异。  相似文献   

12.
利用1961-2004年NCEP/NCAR再分析逐候资料和全国160站月平均降水资料,分析了初夏至盛夏东亚副热带急流北跳和急流中心西移发生早晚对7月东亚大气环流和我国降水的影响。结果表明,急流北跳时间与7月长江中下游地区降水异常正相关,急流中心西移时间则与7月淮河流域降水异常正相关,与华北和河套地区降水异常负相关。急流北跳时间与南亚高压和西太平洋副热带高压南北位置异常及高纬贝加尔湖以东高压脊强度相关;而急流中心西移时间与南亚高压和西太平洋副热带高压的东西伸展及贝加尔湖以西高压脊强度相关,在急流中心西移偏晚年,南亚高压西缩,贝加尔湖西南侧高压脊增强,南下至华北和河套地区冷空气偏强,且西太平洋副热带高压东撤,冷暖空气在淮河流域交汇,使得华北和河套地区降水减少而淮河流域降水偏多;偏早年情况与偏晚年情况相反。  相似文献   

13.
利用NCEP/NCAR再分析资料研究了季节转换期间副热带高压结构的气候特征。在亚、非季风区 ,冬季副热带高压带是相对对称的 ,具有脊线连续的带状结构 ,脊面随高度增加向南倾斜 ;夏季副热带高压带中低层是间断的 ,高层是连续的 ,脊面随高度增加向北倾斜。副热带高压脊面倾斜受热成风关系的制约 ,总是倾向暖区。 5月份副热带高压形态变异最显著 ,不同地域副热带高压的结构、性质存在较大差异。夏季型副热带高压于 5月初首先出现在孟加拉湾东部 ,5月第 3候稳定建立在孟加拉湾东部、中南半岛及南海西部地区 ;5月第 4~ 5候在南海建立 ;6月第 1~ 2候在印度中部建立。夏季型副热带高压建立的 3个阶段与亚洲夏季风爆发的 3个阶段存在着较好的对应关系。孟加拉湾夏季风的建立在很大程度上取决于高空副热带高压脊面附近经向温度梯度的反转。对流层中上层副热带高压脊面附近经向温度梯度可以作为表征亚洲夏季风爆发的指标  相似文献   

14.
近50年西南地区秋雨监测指标的建立及成因分析   总被引:2,自引:0,他引:2  
利用西南地区四川、重庆、云南和贵州秋季降水量和日照时数资料,对西南地区秋雨极端天气气候事件的监测指标进行了探讨,最终定义连续5天以上日降水量大于等于0.1 mm,且日照时数小于等于0.1h的天气过程为1次秋雨事件.以此指标得出西南秋雨事件主要发生在四川盆地中南部、重庆西部、云南东北部和贵州北部等地区,秋雨最强中心平均每年发生华西秋雨事件可达1.6次以上,年平均秋雨日数大于11天.近50年西南秋雨强度呈波动下降趋势.结合NCEP/NCAR同期的位势高度场、水汽场以及风场资料对西南秋雨的成因分析表明:在秋雨强年,500 hPa高度场上极区气压偏高,中纬地区气压偏低,西风环流较弱,副高脊线易偏北,印缅槽较深.850hPa高度场上在西南秋雨较强的区域有一个明显的水汽汇,在风场上也有较强的来自孟加拉湾和印度洋水汽输送.垂直经圈环流和纬圈环流有明显的上升运动与之配置.  相似文献   

15.
利用美国国家环境预测中心与国家大气研究中心(NCEP/NCAR)逐日再分析资料,针对北大西洋多年代际振荡(AMO)两个不同位相,对逐候200 hPa经向风异常进行EOF分析,发现在AMO正、负位相期间,欧亚副热带波列的季节内活动存在明显差异。利用超前—滞后回归,对比了不同AMO位相下副热带波列及其相联系的印度夏季降水的季节内活动演变特征,分析有关的大气环流,探究波列影响降水的机制。结果表明:在AMO负位相期间,由格陵兰岛以南北大西洋经大不列颠岛、地中海、黑海—里海向南亚北部传播的副热带波列的季节内演变,在印度中部引起下沉,导致中部及西北部季节内降水减少,波列负位相相反;在AMO正位相期间,副热带波列西起冰岛以南北大西洋经丹麦南部、俄罗斯西部、中亚向南亚东北部传播,对应该波列的季节内演变,辐合上升区在印度中部和东西两侧,使得该区域季节内降水增加,波列负位相相反。于是,AMO通过调制夏季欧亚副热带波列的季节内活动,可以对印度夏季降水的季节内变化空间型及演变发挥显著影响。  相似文献   

16.
副热带高压自身变化周期和形态结构对入梅的影响   总被引:4,自引:3,他引:1  
刘梅  韩桂荣  张备  金小霞 《气象科学》2013,33(4):430-435
针对2010年江淮入梅预报出现偏差情况,利用2008、2010、2011年降水实况资料和6-7月NCEP再分析资料,分析了预报出现偏差的原因,讨论了副热带高压水平移动和垂直结构对降水落区的影响,分析了局地入梅的预报方法和参考指标.研究发现:副热带高压(以下简称“副高”)和南亚高压的自身双周振荡规律在预报中不可忽略,在对大尺度系统和较长时间系统的变化判断时,高层系统的预报可信度可能更高.另外,在对梅雨预报时,副高垂直结构的变化对降水落区有一定影响,当500 hPa副高脊线越过20°N,副高脊线自上而下向南倾斜时,底层脊线在20°N以南,不利于江淮地区降水发生.副高上下结构垂直度较大时,利于降水落区北移.副高西脊点自高空到低空呈自西向东倾斜,500 hPa西脊点偏西也不利于江淮梅雨期的开始.  相似文献   

17.
基于西北地区东部81站1961—2010年夏季(6—8月)逐月降水资料和NCEP/NCAR再分析资料,利用距平合成分析,探讨其多雨年和少雨年逐月500 hPa高度场和700 hPa湿度场特征。结果表明:西北地区东部多雨年,影响降水的天气特征表现为乌拉尔山脊逐月偏强,7月鄂霍次克海脊偏强,贝加尔湖高压脊转为低槽,7月巴尔喀什湖低槽较6月偏强。8月贝加尔湖长波槽较7月偏强;少雨年天气系统表现为6—8月西北地区东部受高压脊前西北气流控制。西太平洋副热带高压(以下简称:副高)多雨年较少雨年偏西偏强。6—8月多(少)雨年比湿的变化表明,西北地区东部降水多雨年,大气的含水量较高,西北地区东部降水少雨年,大气的含水量较低。  相似文献   

18.
The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu(i.e.,the East Asian rainy season in June) and the related tropical convection were investigated.During the both flooding cases,although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere,the phase of the Rossby wave train is different over Eurasian continent.During flooding in the Huaihe River valley,only one single blocking anticyclone is located over Baikal Lake.In contrast,during flooding in the Yangtze River valley,there are two blocking anticyclones.One is over the Ural Mountains and the other is over Northeast Asia.In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific(SAWP) in both flooding cases,but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding.Furthermore,abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula.However,the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific.Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation;and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation.While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south,along with abundant rainfall.  相似文献   

19.
Using the NCEP/NCAR reanalysis wind and temperature data (1948–2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N–27.5°N, 80°E–90°E) and Ocean (5°S–0°S, 75°E–85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land–sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land–sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus, the study explained the long-term trend in TEJ and its relation with May month temperature over the Indian Ocean and land region and its effect on the trend and spatial distribution of Indian summer monsoon rainfall.  相似文献   

20.
By using the significance test of two-dimensional wind field anomalies and Monte Carlo simulation experiment scheme, the significance features of wind field anomalies are investigated in relation to flood/drought during the annually first rainy season in south China. Results show that western Pacific subtropical high and wind anomalies over the northeast of Lake Baikal and central Indian Ocean are important factors. Wind anomalies over the northern India in January and the northwest Pacific in March may be strong prediction signals. Study also shows that rainfall in south China bears a close relation to the geopotential height filed over the northern Pacific in March.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号