首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
通过对2008年开平市雾日的各种气象要素分析,得出与大雾联系最为紧密的三个气象条件:当日08时相对湿度大于或等于95%,当日08时2分钟平均风速小于1.5m·s-1,前一日08时能见度小于10.0km.并以这三个气象条件为标准,得出开平市大雾天气预报的方法.  相似文献   

2.
在计算机报表预审程序中,判断轻雾时,有一个相对湿度大于或等于60%的判据,于是便在某些观测员中出现了以下情况:当湿度计读数在60%附近时,由于不能立即确定相对湿度实测值是否大于或等于60%,便将应有的天气现象忽略不记,能见度记为10.0km,或只耍相对湿度小于60%,能见度小于10.0km,此时又不宜记其他现象时,则必记霾。 轻雾为空气中水汽凝结而成的稀薄的雾,呈白色或灰色,且气层稳定,空气较潮湿,早晚常见,其出现时能见度在1.0~10.0 km之间;而霾为大量极细微尘粒均匀浮游空中形成,可使空气…  相似文献   

3.
利用2016年10月—2019年9月太原地区逐时能见度、相对湿度及颗粒物质量浓度等观测数据,研究分析了大气能见度与相对湿度及PM_(2.5)质量浓度的关系,采用神经网络方法,构建了能见度与相对湿度及颗粒物质量浓度的非线性模型,并利用2019年10月—12月气象小时数据对该模型进行了检验。结果表明:(1)太原不同季节能见度日变化特征明显,春夏秋季能见度在06时左右最低,冬季在09时左右最低;从空间分布上看,太原地区能见度南北差异明显,北部能见度高于南部。(2)细颗粒物质量浓度与相对湿度对大气能见度变化都有明显影响。PM_(2.5)质量浓度与能见度之间存在幂函数非线性关系,在40%≤相对湿度60%的区段内相关性最强,PM_(2.5)质量浓度与10 km能见度对应的阈值随相对湿度升高而减小,范围为5~103μg/m~3。(3)采用神经网络方法构建能见度与相对湿度及颗粒物质量浓度的关系模型,相关系数为0.81。利用太原地区2019年10—12月逐时气象观测数据对模型进行检验,均方根误差为5.29 km,平均绝对百分误差为31.45%,轻微级霾情况下模拟能见度TS评分为0.86,误差呈现正态分布,误差小于4 km的比例达72.99%。该模型对研究太原地区能见度具有较高的参考价值。  相似文献   

4.
将京津冀地区177个自动站2000—2020年地面资料分为2000—2013年(目测)、2014年(目测与器测)和2015—2020年(器测)3个阶段对能见度进行对比分析。定义冷季为11月至翌年4月,暖季为5—10月。结果表明:能见度年平均值在08时和14时绝大多数站点器测值小于目测值。冷季月平均能见度08时器测低于目测,14时差别较08时明显缩小;暖季08时器测总体低于目测,但两者差异小于冷季,5月差异最小。2014年,在雾霾多发的1—4月,08时和14时器测能见度明显小于目测,在雾霾较少的5—12月,半数以上器测能见度大于目测。能见度小于12 km时,器测小于目测,12 km以上时器测大于目测,能见度小于1 km时器测接近目测。能见度和相对湿度呈反相关。当能见度小于0.5 km,目测和器测的相对湿度为93%~96%,但随着能见度的增大,器测更为分散。能见度转为器测后,雾和霾次数明显增加,霾更明显。京津冀地区雾器测和目测高发区均位于京广铁路沿线,但霾高发区是从中南部太行山到平原过渡的浅山区东移到京广铁路沿线。  相似文献   

5.
张立  王玉龙  王媛 《山东气象》2022,42(2):54-63
针对东营市2016—2017 年出现的27 个低能见度天气过程,利用 MP -3000A 型地基微波辐射计二级数据,计算过程影响期间逐10 min 的逆温层温差、逆温层厚度和低层相对湿度等物理量。 结合空气质量和能见度变化情况,按照雾和霾、雾、降水三类天气对 27 次过程进行分类研究,总结地基微波辐射计观测的温湿度量对低能见度天气的指示意义和参考指标。结果表明:(1)雾和霾共同影响导致的低能见度天气出现在冬半年,PM2. 5浓度越大通常对应的能见度越低;逆温层温差和逆温层厚度与能见度的相关系数分别为-0. 39 和-0. 45,逆温层温差增大指示能见度降低,逆温层厚度减小指示能见度升高。低层相对湿度在 90%以上时,能见度受雾影响通常小于 2 km;低层相对湿度在80%以下时,能见度受霾影响仍然维持在5 km 以下。(2)雾影响导致的低能见度天气多出现在冬半年,与 PM2. 5浓度无关;逆温层温差和逆温层厚度与能见度的相关系数分别为-0. 54和-0. 45。在逆温层生成和破坏阶段,逆温层温差变化幅度大,对能见度的指示性更强,而逆温层厚度变化幅度相对较小,多维持在 300 ~ 400 m 之间。低层相对湿度 90%以上时能见度通常小于5 km,当低层湿层消失后能见度升高至 5 km 以上。(3)降水影响导致的低能见度天气出现在夏季,多伴随短时强降水出现,强降水时段逆温层温差达到8 ℃ 以上,逆温层厚度为 500 m;强降水结束后,逆温消失,能见度转好。  相似文献   

6.
2013年至今,中国冬季与雾霾相伴的低能见度事件频发,京津冀及周边地区尤为严重。PM2.5浓度与环境湿度是导致低能见度的最关键影响因素。为了深入研究PM2.5浓度与环境湿度对大气能见度的影响,利用2017年1月京津冀及周边地区MICAPS气象数据与PM2.5观测数据,运用天气学诊断分析方法讨论了不同相对湿度下PM2.5浓度、环境湿度对冬季能见度变化的相对贡献,按照地理环境与污染程度差异将京津冀及周边地区划分为北京-天津地区与河北-山东地区,建立了PM2.5浓度与环境湿度(由露点温度、温度代表)对能见度的多元回归方程,并对2015、2016、2018、2019年冬季能见度进行了回算检验。结果显示:相对湿度低于70%、PM2.5浓度低于75 μg/m3时,北京-天津地区与河北-山东地区能见度多高于10 km,PM2.5浓度升高是此时能见度迅速降低的主导因素;相对湿度从70%上升至85%和PM2.5浓度从75 μg/m3升高200 μg/m3的共同作用导致了能见度降低到10 km至5 km;能见度进一步从5 km下降至2 km则更多依赖于相对湿度进一步从85%升高至95%,PM2.5浓度与此时能见度相关减弱;能见度降低至2 km甚至更低主要是由于水汽近饱和状态下(相对湿度95%以上)的雾滴消光引起,与PM2.5浓度的变化关系不大。与不分组直接拟合相比,以相对湿度85%为界线,分别拟合能见度能够很大程度优化多元回归模型,相对湿度高于85%时能见度拟合值的均方根误差从9.2和5.2 km下降至0.5和0.7 km,5 km以下拟合能见度的误差大幅度减小。按相对湿度85%将数据分组所得的拟合方程对2015、2016、2018、2019年1月能见度估算结果较好,观测值与拟合值相关系数均高于0.91,为雾-霾数值预报系统提供了新的能见度参数化算法。   相似文献   

7.
河北省低能见度事件特征分析   总被引:1,自引:1,他引:0  
付桂琴  张迎新  张庆红  张南  张彦恒 《气象》2013,39(8):1042-1049
利用1981—2010年河北省99个地面气象站资料,分析河北省低能见度事件变化特征,为河北环境保护及综合治理提供参考。结果表明:低能见度事件地理分布呈北少南多特点,冀北高原少,太行山东麓、燕山南部地区多,低能见度出现频次排在前6位的站点都集中在太行山东麓;20世纪80年代低能见度频次相对较少,90年代迅速增长,2000年后随着对环境保护的重视,低能见度出现频次有所下降;12和1月低能见度出现频次明显偏多,占全年总频次的37.9%,5和6月低能见度出现频次较少,约占全年的5%,季节变化明显;低能见度变化增加趋势的站点主要分布在太行山东部和唐山、张家口东南部,经济工业相对比较发达且交通便利地区,呈现减少变化趋势的站点主要分布在冀北高原、衡水经济工业相对滞后地区,秦皇岛、沧州沿海一带也呈减少趋势;相对湿度与能见度有显著的负相关,小于2km的低能见度主要出现在相对湿度>80%的天气,5 km以上的低能见度主要出现在相对湿度<60%的天气条件下。  相似文献   

8.
一般来说,在各个季节,轻雾的产生所要求的湿度条件和影响的能见度并不完全一样,但却有一定的规律可循。我对60个轻雾个例按冬半年和夏半年分别作了统计(表1)。由上表可见,冬半年轻雾生成时,相对湿度一般在65—85%之间,能见度在5.0—10.0千米之内;夏半年轻雾生成时相对湿度一般>90%,能见度在1.0—7.0千米之内。在实际工作中,只要了解了一些天气现象的相互关系和规律,就比较容易对错误的  相似文献   

9.
利用2011—2012年盖州市大气能见度和地面气象要素(相对湿度、风速、气温、气压)的观测资料,分析了盖州地区大气能见度月和日的变化特征及大气能见度与气象要素的相关性。结果表明:盖州市大气高能见度事件多出现在3月和10月,低能见度事件多出现在6—8月;夏季能见度最低,14时能见度最大,20时能见度比08时略小。大气能见度与相对湿度相关性最大,与风速和气温相关性次之,与气压相关性最差;当相对湿度80.0%时,能见度最低值为10.4±3.2km,大气能见度与气压、气温、相对湿度的相关系数分别为-0.52、0.51和-0.52;其中较高的气温、较大的相对湿度、较小的风速及较低的气压是盖州地区低能见度(10km)事件发生的主要气象条件。  相似文献   

10.
根据大连气象站1980—2013年的能见度、天气现象、湿度、风等资料,采用趋势分析、相关分析、频率分析等方法,研究了大连市能见度的变化特征及影响因子。结果表明:近34 a来,大连市能见度呈显著(α=0.01)的下降趋势,下降速率为1.4 km/10a。一年中秋季能见度最好,夏季能见度最差; 月最大值出现在10月,最小值在7月; 一日当中14时能见度最好,08时能见度最差;小于10.0 km的低能见度事件显著增加。大连市能见度的下降可能与雾霾天气增多、水汽压增加及风速的减小有关。  相似文献   

11.
利用广州白云机场2005-2017年的大气能见度、相对湿度、风速、气温等要素的逐时观测资料,结合花都花东站2012-2017年PM2.5浓度的逐时观测数据,分析了近年来白云机场能见度的变化特征,探究了能见度与气象要素、大气污染物之间的关系。结果表明:2005-2017年白云机场能见度呈逐年增大趋势,低能见度出现次数总体呈减少趋势。2-4月是机场低能见度时期,7月能见度最大。能见度日变化显著,最低能见度通常出现在清晨,午后明显好转。白云机场能见度与相对湿度、PM2.5浓度呈负相关关系,与风速、气温成正相关关系,其中PM2.5浓度对能见度的影响最明显。当相对湿度小于80%时,能见度下降得较为缓慢;而当相对湿度超过80%时,能见度急剧降低。相对湿度越大,出现低能见度所需的PM2.5浓度值就越小。地面风速在0~4 m·s-1时,相对湿度越大,能见度随风速的增长趋势越显著。  相似文献   

12.
武汉作为中部地区高湿度代表城市,大气污染严重,霾天气多发,但有关该地区大气能见度与PM2.5浓度及相对湿度(RH)的定量关系尚不明确。利用2014年9月—2015年3月武汉地区逐时能见度、相对湿度及颗粒物质量浓度观测数据,研究分析了武汉大气能见度与PM2.5浓度及相对湿度的关系,并进行能见度非线性预报初探,得到以下结论:武汉霾时数发生比例高,霾的发生和加重是能见度降低的主要原因;能见度降低伴随大量细粒子产生和累积,这是武汉大气能见度恶化的重要诱因。细颗粒物浓度与相对湿度共同影响和制约大气能见度变化,高湿高浓度时能见度显著下降,湿情景下(RH≥40%),能见度恶化主要是由湿度增高诱使细颗粒物粒径吸湿增长导致其散射效率增大造成的。当RH >90%时,能见度随湿度升高成线性递减,相对湿度每升高1%,武汉平均能见度降低0.568 km。而干情景下(RH2.5质量浓度升高。在城市大气细粒子污染背景下,能见度与相对湿度成非线性关系,这主要与PM2.5对能见度的影响及吸湿性颗粒物的散射效率变化有关。PM2.5浓度与能见度成幂函数非线性关系,80%≤RH2.5浓度对能见度的影响敏感阈值是随着湿度升高而减小的,干情景下能见度10 km对应的PM2.5浓度阈值为70 μg/m3,湿情景下该阈值为18—55 μg/m3。当PM2.5质量浓度低于约40 μg/m3时,继续降低PM2.5可显著提高武汉大气能见度。预报试验表明,基于神经网络方法建立大气能见度非线性预报模型是可行的,预报能见度相关系数为0.86,均方根误差为1.9 km,能见度≤10 km的TS评分为0.92。网络模型具有较高预报性能,对霾的判别有较高准确性,为衔接区域环境气象数值预报模式,建立大气能见度精细化动力统计模型提供参考依据。   相似文献   

13.
广州地区低能见度事件变化特征分析   总被引:15,自引:2,他引:13  
使用2004—2007年广州地区番禺、东山和南沙站3套能见度仪和3套自动气象站的逐时能见度、相对湿度等气象要素资料,通过对比研究,分析了3地低能见度事件的年、季和日变化等变化规律。研究表明,近年来广州地区轻雾(雾)出现频率总体较低且日数偏少,霾天气高发期在10月—次年4月、7月极少出现,年变化特征明显。番禺低能见度事件以5~8 km的情况居多,东山和南沙则以8~10 km的轻度视程障碍为主;但同期番禺≥10 km的日数百分比增长最显著,意味着当地能见度有明显好转。低能见度事件多见于70%≤RH90%的中高相对湿度范围,RH30%的低相对湿度情况下未曾出现视程障碍现象;番禺和东山的低能见度事件有随RH减少而增多的趋势,南沙则大致相反。对比分析有代表性的旱、雨季发现,(极端)低能见度事件多在早晚发生,日间能见度低值区则一般出现在正午前后,日变化特征明显,且旱季更显著,同时以番禺最具代表性。总体上广州地区的低能见度事件呈逐年减少的趋势。  相似文献   

14.
通过对广州南沙2016年颗粒物PM_(10)和PM_(2.5)的质量浓度、能见度和气象要素等资料的分析,发现细颗粒物PM_(2.5)是影响能见度变化的重要因素。PM_(2.5)质量浓度和相对湿度(RH)增加,能见度下降,低能见度对应较高的相对湿度和较高PM_(2.5)质量浓度,高能见度的出现则对应较低的相对湿度和较低的PM_(2.5)质量浓度。随着相对湿度的增加,颗粒物质量浓度对能见度的影响越来越小,此时颗粒物对能见度的影响主要是通过吸湿作用,吸湿作用最为明显的是雾和霾的混合区间80%≤RH≤90%。PM_(2.5)质量浓度对能见度的影响随着RH的增加阈值减小,当相对湿度低于90%时,颗粒物质量浓度值减小时,能见度随相对湿度的增加反而降低,尤其是60%RH≤90%的区间,能见度下降明显。  相似文献   

15.
利用2012~2020年成都市气象站观测资料和环境空气质量监测数据,研究了该地区能见度时空演变规律以及不同等级能见度下气象要素和污染物浓度的关系。结果表明:(1)成都市近9 a年平均能见度呈上升趋势。四季平均能见度由高到低依次为夏季(12.25 km)、春季(10.82 km)、秋季(9.04 km)和冬季(6.33 km)。成都市能见度日变化呈单峰型分布特征,07时能见度最低,17时能见度最高。(2)能见度空间分布特征为东高西低且北高南低,中部中心城区最低。(3)成都市3 km以下低能见度出现频率为10.92%,3~5 km、5~10 km和10~20 km能见度出现频率分别为15.92%、24.95%和22.51%。(4)能见度上升与对应的PM2.5和PM10浓度、相对湿度减少以及风速增加有关。当能见度低于1 km时,多为高湿(RH>96%)低温(T<10.6℃)和小风速(<1.0 m/s)和高浓度(PM2.5>84.8 μg/m3,PM10>129.0 μg/m3)。   相似文献   

16.
天津大气能见度与相对湿度、PM10及PM2.5的关系   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究大气气溶胶及空气中水汽与大气能见度下降的关系,利用2009年天津大气边界层观测站大气能见度资料和同期观测的相对湿度、PM10及PM2.5资料,对三者与大气能见度的关系进行了分析。结果表明:大气能见度与相对湿度线性相关系数最高,PM2.5次之;大气能见度随相对湿度的增大而明显降低。相对湿度低于60 %时,大气能见度与PM2.5的非线性相关性较好,与PM10次之,与PM10与PM2.5差值的相关性最差。相对湿度高于60 %时,大气能见度与PM10的非线性相关性较好,与PM10-PM2.5差值的相关性次之。大气能见度与相对湿度非线性相关系数高于线性相关系数。利用相对湿度、PM10及PM2.5数据计算得到了具有季节变化的非线性大气能见度拟合公式,经验证,该公式能较好地模拟天津地区的大气能见度。  相似文献   

17.
影响能见度的不仅仅是大气污染物,雾也是一个重要因素。因此,用能见度反映空气质量,需要考虑水汽的作用。在已有的研究结果基础上,构造空气污染指数(API)与能见度和空气相对湿度的数学关系。依据全国10个代表城市2001—2012年逐日API资料和同期08:00(北京时)地面气象资料,运用线性回归方法,确定公式中的待定系数,从而建立利用能见度和相对湿度估算API的统计方程。结果表明:(1)当空气相对湿度小于78%时,能见度主要受空气污染物浓度影响;当空气相对湿度大于96%时,能见度主要受空气湿度影响;当空气相对湿度介于78%~96%时,能见度受空气污染物浓度和空气湿度共同影响;(2)除拉萨和兰州外,其余城市API与能见度和相对湿度的相关程度都通过了α=0.000 01的显著性水平,并且相关程度冬半年好于夏半年;(3)API与能见度和相对湿度拟合关系中的参数b0和b,除拉萨、乌鲁木齐和兰州以外,其余城市的变化幅度都比较小;(4)回代检验表明,除个别月份外,绝对误差和相对误差都相对较小,说明API与能见度和空气湿度的数学关系式可以拟合API。  相似文献   

18.
天津武清能见度特征分析   总被引:5,自引:0,他引:5  
利用2006年8~9月的野外观测资料,分析了天津武清区晴天能见度的变化特征,并分析了能见度与细粒子(PM2.5)、大气污染物和大气相对湿度(RH)的相关性。结果表明:观测期内大气平均能见度为6.3km,低于4km的时间段占50%;日变化表现为日出前(北京时间5时)能见度最低,约为2.6km,下午15时最高,约为11.1km;不同大气相对湿度下能见度与大气中细颗粒物浓度相关性不同;污染气体浓度与能见度呈反相关关系,φ(SO2)、φ(NO2)、φ(NO)、φ(NH3)和φ(CO)越高,能见度越低。  相似文献   

19.
北京一次持续性雾霾过程的阶段性特征及影响因子分析   总被引:11,自引:1,他引:10  
利用北京地区高时间分辨率观测资料对2009年11月3—8日一次持续性雾霾天气过程中的气象因素和气溶胶演变特征进行了分析。结果表明,该次雾霾过程具有明显的阶段性特征,前期以霾为主,中期发展为雾霾交替,后期随着相对湿度减小再次转换为霾并最终消散。边界层逆温是低能见度过程形成的必要条件,但并不最终决定雾霾低能见度强度。相对湿度和PM2.5浓度是决定能见度大小的两个关键影响因子,对能见度的影响体现出阶段性特征。大部分时段PM2.5浓度是影响能见度的主要因子,当能见度小于1 km时,能见度变化更多受相对湿度影响。不同的情景计算表明,控制PM2.5浓度对于改善本次过程的能见度有重要作用。  相似文献   

20.
一次持续性雾霾天气过程的阶段性特征及影响因子分析   总被引:4,自引:0,他引:4  
苗爱梅  李苗  王洪霞 《干旱气象》2014,32(6):947-953
应用常规与非常规气象观测资料及PM2.5浓度监测资料,对2013年1月20~24日山西区域一次持续性雾霾天气过程进行分析。研究发现:(1)本次雾霾天气过程具有明显的阶段性特征。2013年1月20日14时至23日11时,由于相对湿度的变化导致了3次轻雾转大雾过程;23日14~20时,由于PM2.5浓度的增大经历了1次轻雾转霾的天气过程。(2)地面弱的气压场和较小的风速以及PM2.5浓度的上升和相对湿度的增大为本次持续性雾霾天气过程的形成和发展提供了有利条件。(3)边界层逆温的存在是雾霾低能见度过程形成的必要条件,边界层有逆温层而不出现雾霾天气的条件是:相对湿度〈50%,PM2.5日均值浓度〈75μg·m-3;逆温层下相对湿度的大小是区别雾和霾天气的指标。(4)相对湿度和PM2.5是决定能见度大小的关键因子,其对能见度的影响体现出明显的阶段性特征,当相对湿度〈90%时,PM2.5浓度对能见度的作用强于相对湿度,是影响能见度变化的主要因子,但随着相对湿度的增大,其对能见度的影响相对增强,当能见度降至1 km以下时,相对湿度成为影响能见度变化的主要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号