首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
SEONG HEE  CHOI  JONG IK  LEE  CHUNG-HWA  PARK  JACQUES  MOUTTE 《Island Arc》2002,11(4):221-235
Abstract   Ultramafic xenoliths in alkali basalts from Jeju Island, Korea, are mostly spinel lherzolites with subordinate amounts of spinel harzburgites and pyroxenites. The compositions of major oxides and compatible to moderately incompatible elements of the Jeju peridotite xenoliths suggest that they are residues after various extents of melting. The estimated degrees of partial melting from compositionally homogeneous and unfractionated mantle to form the residual xenoliths reach 30%. However, their complex patterns of chondrite-normalized rare earth element, from light rare earth element (LREE)-depleted through spoon-shaped to LREE-enriched, reflect an additional process. Metasomatism by a small amount of melt/fluid enriched in LREE followed the former melt removal, which resulted in the enrichment of the incompatible trace elements. Sr and Nd isotopic ratios of the Jeju xenoliths display a wide scatter from depleted mid-oceanic ridge basalt (MORB)-like to near bulk-earth estimates along the MORB–oceanic island basalt (OIB) mantle array. The varieties in modal proportions of minerals, (La/Yb)N ratio and Sr-Nd isotopes for the xenoliths demonstrate that the lithospheric mantle beneath Jeju Island is heterogeneous. The heterogeneity is a probable result of its long-term growth and enrichment history.  相似文献   

2.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   

3.
Sung Hi  Choi  Sung-Tack  Kwon 《Island Arc》2005,14(3):236-253
Abstract   The mantle-derived xenoliths entrained in the Pliocene basanite from Baengnyeong Island, South Korea, are spinel lherzolites and spinel harzburgites. The overall compositional range of the Baengnyeong xenoliths matches that of the post-Archean xenoliths of lithospheric mantle origin from eastern China, but without any compositional evidence for a refractory Archean mantle root. Mineral compositions of the xenoliths have been used to estimate the equilibrium temperatures and pressures, and to construct a paleogeothermal gradient of the source region. The xenolith-derived paleogeotherm is constrained from about 820°C at 7.3 kbar to 1000°C at 20.6 kbar. Like those from the post-Archean Chinese xenoliths of lithospheric mantle origin, the Baengnyeong geotherm is considerably elevated relative to the conductive models at the depth of the crust–mantle boundary, reflecting a thermal perturbation probably related to lithospheric thinning. There is no significant P / T difference between harzburgite and lherzolite, which suggests that the harzburgites are interlayered with lherzolites within the depth interval beneath Baengnyeong Island.  相似文献   

4.
Abstract Ultramafic xenoliths found in alkali basalts from Jeju Island, Korea are mostly spinel lherzolites accompanied by subordinate amount of spinel harzburgites and pyroxenites. The combination of results from a two-pyroxene geothermometer and Ca-in-olivine geobarometer yields temperature–pressure (T–P) estimates for spinel peridotites that fall in experimentally determined spinel lherzolite field in CaO-Fe-MgO-Al2O3-SiO2-Cr2O3 (CFMASCr) system. These T–P data sets have been used to construct the Quaternary Jeju Island geotherm, which defines a locus from about 13 kbar at 880°C to 26 kbar at 1040°C. The geothermal gradient of Jeju Island is greater than that of the conventional conductive models, and may be as a result of a thermal perturbation by the heat input into the lithospheric mantle via the passage and emplacement of magma. Spinel–lherzolite is the main constituent rock-type of the lithospheric mantle beneath Jeju Island. Pyroxenites may be intercalated in peridotites at similar depth and temperature as re-equilibrated veins or lenses.  相似文献   

5.
The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr# = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38–0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10?1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr#, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr# and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj–Sirjan zone, show that these peridotites mark the site of the Nain–Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj–Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.  相似文献   

6.
This study is focused on a plagioclase‐bearing spinel lherzolite from Chah Loqeh area in the Neo‐Tethyan Ashin ophiolite. It is exposed along the west of left‐lateral strike‐slip Dorouneh Fault in the northwest of Central‐East Iranian Microcontinent. Mineral chemistry (Mg#olivine < ~ 90, Cr#clinopyroxene < ~ 0.2, Cr#spinel < ~ 0.5, Al2O3orthopyroxene > ~ 2.5 wt%, Al2O3clinopyroxene > ~ 4.5 wt%, Al2O3spinel > ~ 41.5 wt%, Na2Oclinopyroxene > ~ 0.11 wt%, and TiO2clinopyroxene > ~ 0.04 wt%) confirms Ashin lherzolite was originally a mid‐oceanic ridge peridotite with low degrees of partial melting at spinel‐peridotite facies in a lithospheric mantle level. However, some Ashin lherzolites record mantle upwelling and tectonic exhumation at plagioclase‐peridotite facies during oceanic extension and diapiric motion of mantle along Nain‐Baft suture zone. This mantle upwelling is evidenced by some modifications in the modal composition (i.e. subsolidus recrystallization of plagioclase and olivine between pyroxene and spinel) and mineral chemistry (e.g. increase in TiO2 and Na2O of clinopyroxene, and TiO2 and Cr# of spinel and decrease in Mg# of olivine), as a consequence of decompression during a progressive upwelling of mantle. Previous geochronological and geochemical data and increasing the depth of subsolidus plagioclase formation at plagioclase‐peridotite facies from Nain ophiolite (~ 16 km) to Ashin ophiolite (~ 35 km) suggest a south to north closure for the Nain‐Baft oceanic crust in the northwest of Central‐East Iranian Microcontinent.  相似文献   

7.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   

8.
Ultramafic inclusions from San Carlos, Arizona, are classified into two groups. Group I inclusions are dominated by magnesian (Mg/Mg + ΣFe= 0.86 – 0.91), olivine-rich peridotites containing Cr-rich clinopyroxene and spinel. The less abundant Group I pyroxenites (containing Mg- and Cr-rich pyroxenes) occur as discrete inclusions and as portions of composite inclusions where they have a sharp, planar interface with lherzolite. Group II inclusions are dominated by clinopyroxene-rich peridotites containing Al- and Ti-rich augite and commonly abundant, Al-rich spinel. Compared to Group I inclusions, they are more Fe-rich (Mg/Mg + ΣFe= 0.62 – 0.78) and more hetereogeneous in composition and modal proportions. Similar groups occur at many ultramafic inclusion localities.Our petrographic and geochemical results lead to the following conclusions. Olivine-rich Group I inclusions are not genetically related to the host basanite, and they are formed from two components. Component A is a partial melting residue; it comprises the major portion of these inclusions and determines the modal mineralogy and major and compatible trace element composition. Component B results from a small degree (<5%) of garnet peridotite melting (probably, within the low-velocity zone). This highly LIL-element-enriched melt has migrated upwards into the overlying component A where it crystallized primarily as clinopyroxene and amphibole, and thus, introduced LIL elements into the residual component A. Subsequent cooling and subsolidus recrystallization have removed textural evidence of this mixing. This model has also been proposed for olivine-rich Group I inclusions from Victoria, Australia. At Victoria and San Carlos some relatively clinopyroxene-rich Group I lherzolites are not contaminated by component B, and they represent the best estimates of upper mantle composition prior to melting. Group I orthopyroxenites may be fragments of tectonic layers formed in lherzolite, but they could also be early cumulates (now metamorphosed) from the melt in equilibrium with component A. Group I clinopyroxenites have geochemical features of clinopyroxene in equilibrium with a magma. Thus, they could also represent early cumulates (now metamorphosed) from a magma unrelated to the host basanite. Alternatively, their geochemical characteristics could result from more complex models such as residues from partial remelting of pyroxenite dikes and veins or intradike segregation processes such as filter pressing. All Group II inclusions studied appear to be cumulates derived from a SiO2-undersaturated magma, possibly an early magma in the same volcanic episode which culminated with eruption of the host basanite. The poikilitic texture of amphibole-rich (kaersutite) inclusions is consistent with a cumulate origin. The bulk compositions of Group II inclusions are not equivalent to typical basaltic compositions.  相似文献   

9.
Peridotites exposed in the Yugu area in the Gyeonggi Massif, South Korea, near the boundary with the Okcheon Belt, exhibit mylonitic to strongly porphyroclastic textures, and are mostly spinel lherzolites. Subordinate dunites, harzburgites, and websterites are associated with the lherzolites. Amphiboles, often zoned from hornblende in the core to tremolite in the rim, are found only as neoblasts. Porphyroclasts have recorded equilibrium temperatures of about 1000°C, whereas neoblasts denote lower temperatures, about 800°C. Olivines are Fo90–91 in lherzolites and Fo91 in a dunite and a harzburgite. The Cr# (= Cr/(Cr + Al) atomic ratio) of spinels varies together with the Fo of olivines, being from 0.1 to 0.3 in lherzolites and around 0.5 in the dunite and harzburgite. The Na2O content of clinopyroxene porphyroclasts is relatively low, around 0.3 to 0.5 wt% in the most fertile lherzolite. The Yugu peridotites are similar in porphyroclast mineral chemistry not to continental spinel peridotites but to sub‐arc or abyssal peridotites. Textural and mineralogical characteristics indicate the successive cooling with hydration from the upper mantle to crustal conditions for the Yugu peridotites. Almost all clinopyroxenes and amphiboles show the same U‐shaped rare earth element (REE) patterns although the level is up to ten times higher for the latter. The hydration was associated with enrichment in light REE, resulting from either a slab‐derived fluid or a fluid circulating in the crust. The mantle‐wedge or abyssal peridotites were emplaced into the continental crust as the Yugu peridotite body during collision of continents to form a high‐pressure metamorphic belt in the Gyeonggi Massif. The peridotites from the Gyeonggi Massif exhibit lower‐pressure equilibration than peridotites, with or without garnets, from the Dabie–Sulu Collision Belt, China, which is possibly a westward extension of the Gyeonggi Massif.  相似文献   

10.
Young-Woo  Kil 《Island Arc》2006,15(2):269-282
Abstract   Geochemical data on Baegryeong Island spinel peridotites found in Miocene alkali basalt provide the information for lithosphere composition, chemical processes, equilibrium pressure and temperature conditions. Spinel peridotite xenoliths, showing transitional textures between protogranular and porpyroclastic textures, were accidentally trapped by the ascending alkali basalt magma. The xenoliths originate at depths from 50 to 70 km with a temperature range from 800 to 1100°C. The variations of modal and mineral compositions of the spinel peridotite xenoliths indicate that the xenoliths have undergone 1–10% fractional melting. The spinel peridotites from Baegryeong Island have undergone cryptic mantle metasomatism subsequent to melt extraction. Metasomatic agent of enriched spinel peridotite xenoliths was carbonatite melt.  相似文献   

11.
A suite of highly depleted peridotite xenoliths in East Serbian Palaeogene basanites represents the lithospheric mantle beneath the Balkan Peninsula. The xenoliths are harzburgites, clinopyroxene-poor lherzolites and rare dunites. They contain mostly <5 vol.% of modal clinopyroxene and are characterized by high Mg# in silicates (>91), high Cr# in spinel (mostly 0.5–0.7), and by distinctively low Al2O3 contents in orthopyroxene (mostly 1–2 wt.%). They have experienced some mantle metasomatism which has slightly obscured their original composition. Nevertheless, the general characteristics of the xenoliths imply a composition which is significantly more depleted than most non-cratonic sub-continental mantle xenolith suites, as well as orogenic peridotites and abyssal peridotites. Geological and compositional evidence suggests that the xenoliths do not represent Archean mantle. The existence of Proterozoic mantle cannot be entirely excluded, although it is in disagreement with geological evidence. On the other hand, the studied xenoliths are compositionally very similar to peridotites of modern oceanic sub-arc settings. The existence of such a depleted lithospheric mantle segment is also inferred from the presence of rare orthopyroxene-rich xenoliths in the same suite. These are interpreted to have originated as lithospheric precipitates of high-Mg, SiO2-saturated magmas that require a highly depleted mantle source. Such source is typically required by boninitic-like magmas of intraoceanic suprasubduction settings. A proposed geodynamic model to explain these observations involves accretion or underplating of the lower parts of the Tethyan oceanic lithosphere during the Upper Jurassic closure of the eastern branch of the Vardar ocean.  相似文献   

12.
Sabah A.  Ismail  Shoji  Arai  Ahmed H.  Ahmed  Yohei  Shimizu 《Island Arc》2009,18(1):175-183
Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene-free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.  相似文献   

13.
Major element and modal trends in spinel lherzolites from Salt Lake Crater, Hawaii, and Kilbourne Hole, New Mexico, are essentially identical. These trends have developed through 5–30% partial melting of the same pyrolite-like parent composition. The melting events probably took place at mid-ocean ridges.Using Cr/(Cr + Al + Fe3+) in spinel as an index of the degree of depletion in fusible components in each of a large number of lherzolite inclusions, we have subdivided both suites into relatively parental, intermediate, and refractory groups, and computed an average bulk composition for each group. Compositions of hypothetical melts generated from these rocks are characterized by high MgO (about 18%), low Ti and K, and CaO/Al2O3 around 1.0.The strongly similarity between the two xenolith suites suggests that south central New Mexico is underlain by oceanic mantle. We propose that the Kilbourne Hole lherzolites represent oceanic lithosphere which was buried beneath offshore sediments during a Precambrian ocean basin formation, later to be preserved when subduction further offshore created new additions to the continent above that near-shore oceanic lithosphere. In addition, we propose that the Mg-rich, Ti- and K-poor calculated melts reported here are the primitive precursors to mid-ocean ridge basalts. Early dunite and wehrlite cumulates from some ophiolite sequences may record the fractionation histories these liquids follow prior to eruption at the surface.  相似文献   

14.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   

15.
Abyssal peridotites collected along the highly oblique-spreading Lena Trough north of Greenland and Spitsbergen have mineral compositions that are similar to residual abyssal peridotites, except for high sodium concentrations in clinopyroxene (cpx). Most samples are lherzolites with light rare earth element (REE)-depleted cpx trace element patterns, but significantly fractionated middle to heavy REE ratios at relatively high heavy REE concentrations. Such characteristics can only be explained by initial melting of a garnet peridotite followed by low degrees of melting in the stability field of spinel peridotite. The residual garnet signature requires either a high potential temperature of the upwelling mantle, or elevated solidus-lowering water contents. The limited spinel field melting suggests a deep cessation of melt extraction, possibly because of the presence of a thick lithospheric cap. This is consistent with the extremely low effective spreading rate and the vicinity to a passive continental margin, which allow conductive cooling to reach deeper levels than commonly estimated for faster mid-ocean ridges. High sodium concentrations in cpx are neither explainable by melt refertilization, nor by a simple diffusion mechanism. The efficient fractionation of sodium from the light REE requires post-melting metasomatism, which is typically restricted to the subcontinental lithosphere. This might imply that the Lena Trough peridotites represent unroofed subcontinental mantle, from which no melt was extracted during the opening of the Lena Trough. It is more likely that sodic metasomatism occurred after partial melting underneath the Lena Trough, and that such an enrichment process is responsible for elevated sodium concentrations in abyssal peridotites elsewhere. Sodium in cpx of residual peridotites can therefore not serve as an indicator of partial melting or melt refertilization.  相似文献   

16.
The compilation of data available in the literature and new analyses show that clinopyroxenes are significantly richer in Na and poorer in Cr in peridotites associated with high-grade metamorphic rocks than in ultramafites from oceanic environments, considered as “sub-continental” or “sub-oceanic” mantle, respectively. Two distinctive fields can be drawn in the Na-Cr plot. This fact is related to the large amount of basic magma provided by the oceanic mantle along the mid-oceanic ridges.Application of this Na-Cr diagram to clinopyroxenes from peridotites in orogenic belts and appearing as xenoliths in volcanic rocks and kimberlites (“nodules”) allows us to specify their origin, taking into consideration that the clinopyroxene composition is controlled by several factors each of which gives rise to a particular trend:P-T. conditions, mineral facies, partial melting and crystal fractionation, metasomatism. It appears that oceanic-type mantle may be found under continents in extensional areas having evolved towards rift systems, and in ophiolites. The latter exhibit different degree of depletion related to their formation in two main geotectonic situations: mid-oceanic ridges and active margin systems.  相似文献   

17.
Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. εNd varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a εNdSr correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high87Sr/86Sr ratios and as such lie to the right of the correlation line towards seawater compositions.From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago.  相似文献   

18.
Chromite in the mantle section of the Oman ophiolite: A new genetic model   总被引:9,自引:0,他引:9  
Hugh  Rollinson 《Island Arc》2005,14(4):542-550
Abstract   This paper reviews the compositional data (major elements, platinum group element [PGE] concentrations, Os- and O-isotopes) for chromites from the mantle section of the Oman ophiolite. Chromites in chromitite from the Oman ophiolite lie on a compositional spectrum between high-Cr♯, boninite-like and low-Cr♯, mid-oceanic ridge basalt-like end-members. The high-Cr♯ end-member is low in Ti, has a fractionated PGE pattern and is enriched in iridium group-platinum group elements (IPGE). The low-Cr♯ end-member has higher Ti and an unfractionated PGE pattern. The compositional variation in the chromitites reflects their crystallization from a range of different melt compositions. It is proposed that this wide variation in melt compositions was produced by the process of a melt–rock reaction, whereby a basaltic melt has reacted with harzburgitic mantle to yield successively more Cr-rich melts. In contrast to previous models, this approach does not require a change in the tectonic environment to explain the different chromite types.  相似文献   

19.
Ion and electron microprobe analyses of twenty-one CrAl-spinel harzburgite xenoliths from southern African kimberlites show two chemical groups. Orthopyroxenes from “fertile” harzburgites have higher CaO (mean of 11, 0.95 wt.%), Al2O3 (3.05 wt.%), Cr2O3 (0.85 wt.%) and Li (0.8 ppmw) than those from “barren” harzburgites (mean of 10, CaO 0.24 wt.%, Al2O3 1.10 wt.%, Cr2O3 0.35 wt.%, Li 0.3 ppmw). Olivines from all harzburgites have similar chemistry except that mean values of Li and Na are higher for barren than fertile harzburgites (Li 0.9 vs. 0.4 ppmw; Na2O 16 vs. 7 ppmw). Orthopyroxenes from fertile harzburgites are chemically distinct from those in garne lherzolites from southern Africa and spinel lherzolites from southwest U.S.A., but orthopyroxenes from barren harzburgites are indistinguishable from those in many coarse garnet lherzolites.Chromium, Ca, Ni, Na and Li in coexisting olivines and orthopyroxenes from the above rock types show complex patterns, which for Ca, Cr and Ni can be related to pressure and temperature. Temperatures from an empirically calibrated thermometer based on Ni-Mg exchange between olivine and orthopyroxene, measured modes of harzburgites (fertile, mean of 10: ol 68, opx 31, spinel-silicate intergrowth <0.5; barren, mean of 8: ol 76, opx 23, spinel and spinel-silicate intergrowth 1), and high-pressure experimental studies suggest (a) that harzburgites are residues of partial melting, (b) that barren harzburgites were melted to a greater extent at a higher temperature (though probably at a similar depth) than fertile harzburgites, and (c) that incomplete reequilibration during retrograde metamorphism has led to development of complex inter- and intragranular textures, probably in the range ~700–900°C.  相似文献   

20.
Garnet compositions are used to understand mantle petrogenesis and to reconstruct the lithostratigraphy of the shallow mantle (<200 km). However, garnets in polymict peridotites from the Kaapvaal craton (>2500 Ma) have a centimeter-scale elemental and stable isotopic variability suggestive of a mixed mantle provenance. The chemical heterogeneity of the garnets is similar to that reported from rocks sampled over a considerable depth and temperature range within the lower lithosphere. For example garnets found in polymict peridotites are similar to garnets found in sheared and granular peridotites, ‘cold’ and ‘hot’ lherzolites, peridotitic (P-type) diamond inclusions, and garnets from polybaric (50-200 km) peridotites (i.e. spinel, garnet and diamond facies). These data indicate that the Kaapvaal cratonic root has been disturbed by complex processes possibly associated with crack propagation and entrainment that juxtaposed garnet-bearing lithologies of diverse petrogenesis, provenance and depth. This has preserved chemical disequilibrium in the high pressure minerals in what is, in effect, a mantle breccia possibly associated with kimberlite precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号