首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
2015年夏季开展了大亚湾悬浮颗粒有机物碳(POC)、氮含量(PN)及其同位素组成的研究,结果表明,δ13CPOC和δ15NPN的变化范围分别为-25.7‰~-17.4‰和-6.3‰~10.4‰,平均值分别为-20.2‰和8.2‰。大亚湾悬浮颗粒有机物含量及其碳氮同位素组成的空间变化反映了不同有机质来源的影响:喜洲岛附近海域表现出高POC、PN、δ13CPOC和δ15NPN的特征,指征着浮游植物水华的主导贡献;东北部范和港附近海域具有高POC、PN、低δ13CPOC和高δ15NPN的特征,反映了河流/河口水生有机物的影响;湾顶白寿湾附近海域的δ13CPOC和δ15NPN出现低值,体现了陆源有机质和人类污水排放的影响。借助δ13CPOC和δ15NPN的三端元混合模型,定量出海洋自生有机质、陆源有机质、河流/河口水生有机质等3个来源的贡献平均分别为70%、13%和17%,其中海洋自生有机质是夏季大亚湾悬浮颗粒有机物的最主要来源。从这3种来源颗粒有机物含量的空间变化看,海洋自生有机质含量由湾内向湾外减少,与初级生产力的空间变化相对应;河流/河口水生有机质含量在大亚湾东北部出现高值;陆源有机质含量在表、底层出现不同态势,表层陆源有机物含量在湾中部海域最低,而底层则呈现出自湾内向湾口增加的趋势,主要受控于离岸距离和珠江冲淡水、粤东沿岸上升流输送的影响。  相似文献   

2.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   

3.
To assess the magnitude, distribution and fate of net community production (NCP) in the Chukchi Sea, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), and particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured during the spring and summer of 2004 and compared to similar observations taken in 2002. Distinctive differences in hydrographic conditions were observed between these two years, allowing us to consider several factors that could impact NCP and carbon cycling in both the Chukchi Shelf and the adjacent Canada Basin. Between the spring and summer cruises high rates of phytoplankton production over the Chukchi shelf resulted in a significant drawdown of DIC in the mixed layer and the associated production of DOC/N and POC/N. As in 2002, the highest rates of NCP occurred over the northeastern part of the Chukchi shelf near the head of Barrow Canyon, which has historically been a hotspot for biological activity in the region. However, in 2004, rates of NCP over most of the northeastern shelf were similar and in some cases higher than rates observed in 2002. This was unexpected due to a greater influence of low-nutrient waters from the Alaskan Coastal Current in 2004, which should have suppressed rates of NCP compared to 2002. Between spring and summer of 2004, normalized concentrations of DIC in the mixed layer decreased by as much as 280 μmol kg−1, while DOC and DON increased by ∼16 and 9 μmol kg−1, respectively. Given the decreased availability of inorganic nutrients in 2004, rates of NCP could be attributed to increased light penetration, which may have allowed phytoplankton to increase utilization of nutrients deeper in the water column. In addition, there was a rapid and extensive retreat of the ice cover in summer 2004 with warmer temperatures in the mixed layer that could have enhanced NCP. Estimates of NCP near the head of Barrow Canyon in 2004 were ∼1500 mg carbon (C) m−2 d−1 which was ∼400 mg C m−2 d−1 higher than the same location in 2002. Estimates of NCP over the shelf-break and deep Canada Basin were low in both years, confirming that there is little primary production in the interior of the western Arctic Ocean due to near-zero concentrations of inorganic nitrate in the mixed layer.  相似文献   

4.
Satellite remote sensing offers new means of quantifying particulate organic carbon, POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived 10-year data of POC concentration in the surface waters of the global ocean. The 10-year time series of the global and basin scale average surface POC concentration do not display any significant long-term trends. The annual mean surface POC concentration and its seasonal amplitude are highest in the North Atlantic and lowest in the South Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic, North Pacific, and global concentrations seem to be inversely correlated with El Niño index, but longer time series are needed to confirm this relationship. Quantitative estimates of POC reservoir in the oceanic surface layer depend on the choice of what should represent this layer. Global average POC biomass is 1.34 g m?2 if integrated over one optical depth, 3.62 g m?2 if integrated over mixed layer depth, and up to 6.41 g m?2 if integrated over 200-m layer depth (when assumed POC concentration below MLD is 20 mg m?3). The global estimate of total POC reservoir in the surface 200-m layer of the ocean is 228.61×1013 g. We expect that future estimates of POC reservoir may be even larger, when more precise calculations account for deep-water organic-matter maxima in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in spring and summer in the temperate regions.  相似文献   

5.
Carbon and nitrogen stable isotopes were used to investigate spatial variation in terrestrial particulate organic matter (POM) input to a coastal area off the Tagus river estuary. Isotopic variation in higher trophic level organisms was also examined, along the coast. This study was carried out in late summer, after a period of 3 months of low river flow. The overall aim was to determine if under such conditions the coastal area is enriched by the river plume and, particularly, if lower secondary productivity should be expected in some areas. Spatial variation was detected as a gradient of decreasing terrestrial input with increasing distance from the river. It was concluded that terrestrial carbon input was also incorporated into higher trophic levels and that organisms with lower mobility are more sensitive to the gradient in terrestrial input. Even in low flow conditions the whole fishing area remained under the influence of the river plume, which still accounted for 24% of the total POM 30 km from the river mouth. Additionally, δ15N values indicated pollution input from the river Tagus.  相似文献   

6.
The abundance, carbon isotopic composition (Δ14C and δ13C), and lipid biomarker (alkenones and saturated fatty acids) distributions of suspended particulate organic matter were investigated at three stations centered on the 2000, 3000, and 3500 m isobaths over the New England slope in order to assess particulate carbon sources and dynamics in this highly productive and energetic region. Transmissometry profiles reveal that particle abundances exhibit considerable fine structure, with several distinct layers of elevated suspended particulate matter concentration at intermediate water depths in addition to the presence of a thick bottom nepheloid layer at each station. Excluding surface water samples, the Δ14C values of particulate organic carbon (POC) indicated the presence of a pre-aged component in the suspended POC pool (Δ14C<+38‰). The Δ14C values at the 3000 m station exhibited greater variability and generally were lower than those at the other two stations where the values decreased in a more systematic matter with increasing sampling depth. These lower Δ14C values were consistent with higher relative abundances of terrigenous long-chain fatty acids at this station than at the other two stations. Two scenarios were considered regarding the potential provenances of laterally transported POC: cross-shelf transport of shelf sediment (Δ14C=?140‰) and along-slope transport of the slope sediment proximal to the sampling locations (Δ14C=?260‰). Depending on the scenario, isotopic mass balance calculations indicate allochthonous POC contributions ranging between 15% and 54% in the meso- and bathy-pelagic zone, with the highest proportions at the 3000 m station. Alkenone-derived temperatures recorded on suspended particles from surface waters closely matched in-situ temperatures at each station. However, alkenone-derived temperatures recorded on particles from the subsurface layer down to 250 m were lower than those of overlying surface waters, especially at the 3000 m station, implying supply of phytoplankton organic matter originally produced in cooler surface waters. AVHRR images and temperature profiles indicate that the stations were under the influence of a warm-core ring during the sampling period. The low alkenone-derived temperatures in the subsurface layer coupled with the lower Δ14C values for the corresponding POC suggests supply of OC on resuspended sediments underlying cooler surface waters distal to the study area, possibly further north or west. Taken together, variations in Δ14C values, terrigenous fatty acid abundances, and alkenone-derived temperatures among the stations suggest that input of laterally advected OC is a prominent feature of POC dynamics on the NW Atlantic margin, and is spatially heterogeneous on a scale smaller than the distance between the stations (<150 km).  相似文献   

7.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

8.
9.
Time-series measurements of 234Th activities and particulate organic carbon (POC) concentrations were made at time-series stations (K1, K2, K3, and KNOT) in the northwestern North Pacific from October 2002 to August 2004. Seasonal changes in POC export fluxes from the surface layer (∼100 m) were estimated using 234Th as a tracer. POC fluxes varied seasonally from approximately 0 to 180 mg C m−2 d−1 and were higher in spring–summer than in autumn–winter. The export ratio (e-ratio) ranged from 6% to 55% and was also higher in spring–summer. Annual POC fluxes were estimated to be 31 g C m−2 y−1 in the subarctic region (station K2) and 23 g C m−2 y−1 in the region between the subarctic and subtropical gyres (station K3). POC fluxes and e-ratios in the northwestern North Pacific were much higher than those in most other oceans. The annual POC flux corresponded to 69% of annual new production estimated from the seasonal difference of the nutrient in the Western Subarctic Gyre (45 g C m−2 y−1). These results indicate that much of the organic carbon assimilated in the surface layer of the northwestern North Pacific is transferred to the deep ocean in particulate form. Our conclusions support previous reports that diatoms play an important role in the biological pump.  相似文献   

10.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

11.
Particulate organic carbon (POC) concentrations from 0 to 1000 m were quantified in size-fractionated particulate matter samples obtained by the multiple unit large volume in situ filtration system (MULVFS) in 1996 and 1997 along the 1600 km long “line P” transect from continental slope waters near southern Vancouver Island to Ocean Station PAPA (OSP, 50°N, 145°W). Regression of in situ POC vs. beam attenuation coefficient, c, from a simultaneously deployed 1-m pathlength SeaTech transmissometer gave slope, intercept and r2 values of 6.15±0.19×10−5 m−1 (nmol C l−1)−1, 0.363±0.003 m−1, and 0.951 (n=145), respectively. This result agreed within several percent of calibrations obtained from two 2600-km-long transects of the equatorial Pacific in 1992 (Bishop, 1999). Data from other, more frequently deployed transmissometers were standardized against the 1-m instrument, and the combined optical data set was used to document POC variability at finer spatial and temporal scales than could be sampled directly using either conventional water bottle casts or MULVFS. Published bottle POC vs. c relationships show much more variability and remain problematic. Along the line P transect in the salinity-stratified upper 100 m, POC isolines shoaled from winter to summer in concert with seasonal stratification. At the same time, POC was progressively enriched in subeuphotic zone waters to depths greater than 500 m. Near-surface POC fields sampled in the winter time showed strong temporal POC variability over time scales of days as well as between years. POC concentrations at OSP in February 1996 were higher than those found at any other time of year. Less variability was found along line P in other seasons. In May 1996, kilometer-scale spatial variability of POC at OSP was small; dawn vs. dusk variations of c were used to calculate 0–100 m POC turnover times shorter than 6 d. Calculations also suggest that 25–50% of primary productivity was expressed as dissolved organic carbon at OSP in May 1996.  相似文献   

12.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

13.
The relationship between particulate organic carbon (POC) concentrations measured in modern sediment and fluxes of exported POC to the sediment surface needs to be understood in order to use POC content as a proxy of paleo-environmental conditions. The objective of our study was to compare POC concentrations, POC mineralization rates calculated from O2 consumption and POC burial rates. Benthic O2 distributions were determined in 58 fine-grained sediment cores collected at different periods at 14 stations in the southeastern part of the Bay of Biscay with depths ranging from 140 to 2800 m. Depth-dependent volume-specific oxygen consumption rates were used to assess rates of aerobic oxidation of organic matter (OM), assuming that O2 consumption solely was related to heterotrophic activity at the sediment–water interface. Heterogeneity of benthic O2 fluxes denoted changes in time and space of fresh organic material sedimentation. The most labile fraction of exported POC engendered a steep decrease in concentration in the upper 5 mm of vertical O2 profiles. The rupture in the gradient of O2 microprofile may be related to the bioturbation-induced mixing depth of fast-decaying carbon. Average diffusive O2 fluxes showed that this fast-decaying OM flux was much higher than buried POC, although diffusive O2 fluxes underestimated the total sediment oxygen demand, and thus the fast-decaying OM flux to the sediment surface. Sedimentary POC burial was calculated from sediment mass accumulation rate and the organic carbon content measured at the top of the sediment. The proportion of buried POC relative to total exported POC ranged at the most between 50% and 10%, depending on station location. Therefore, for a narrow geographic area like the Bay of Biscay, burial efficiency of POC was variable. A fraction of buried POC consisted of slow-decaying OM that was mineralized within the upper decimetres of sediment through oxic and anoxic processes. This fraction was deduced from the decrease with depth in POC concentration. At sites located below 500 m water depth, where the fast-decaying carbon did not reach the anoxic sediment, the slow-decaying pool may control the O2 penetration depth. Only refractory organic material was fossilized in sedimentary records at locations where labile OM did not reach the anoxic portion of the sediment.  相似文献   

14.
The temporal and spatial distribution of total and organic particulate matter is investigated in the Bideford River estuary. Particulate matter is homogenously distributed in both the water column and the surface sediment, due to high rates of resuspension and lateral transport. The measured mean sedimentation rate for the estuary is 183·5 g of particulate matter m?2 day?1, of which more than half is due to resuspension.The surface sediment of the estuary is quantitatively the dominant reservoir of organic matter, with an average of 902·5 g of particulate organic carbon (POC) m?2 and 119·5 g of particulate organic nitrogen (PON) m?2. Per unit surface area, the sediment contains 450 times more POC and 400 times more PON than the water column. Terrestrial erosion contributes high levels of particulate matter, both organic and inorganic, to the estuary from the surrounding watershed. Low rates of sediment export from the estuary result in the accumulation of the terrigenous material. The allochthonous input of terrigenous organic matter masks any relationship between the indigenous plant biomass and the organic matter.In the water column, a direct correlation exists between the organic matter, i.e. POC and PON, concentration and the phytoplankton biomass as measured by the plant pigments. Resuspension is responsible for the residual organic matter in the water column unaccounted for by the phytoplankton biomass.The particulate content of the water column and the surface sediment of the estuary is compared to that of the adjacent bay. Water-borne particulate matter is exported from the estuary to the bay, so that no significant differences in concentration are noted. The estuarine sediment, however, is five to six times richer in organic and silt-clay content than the bay sediment. Since sediment flux out of the estuary is restricted, the allochthonous contribution of terrigenous particulate matter to the bay sediment is minor, and the organic content of the bay sediment is directly correlated to the autochthonous plant biomass.  相似文献   

15.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

16.
The effects of extreme atmospheric forcing on the export flux of particulate organic carbon (POC) in the warm oligotrophic nitrogen-limited northwest Pacific Ocean were examined in 2007 during the spring Asian dust storm period. Several strong northeast monsoon events (maximum sustained wind speeds approaching 16.7 m s? 1, and gusts up to 19.0 m s? 1) accompanied by dust storms occurred during a 1-month period. The cold stormy events decreased surface water temperature and induced strong wind-driven vertical mixing of the water column, resulting in nutrient entrainment into the mixed layer from subsurface waters. As a result, the export flux of POC ranged from 49 to 98 (average value = 71 ± 16) mg m? 2 day? 1, approximately 2–3 times greater than average values in other seasons. As dry and wet deposition of nitrogen attributable to Asian dust storm events does not account for the associated increases in POC stocks in this N-limited oligotrophic oceanic region, the enhancement of POC flux must have been caused by nutrient entrainment from subsurface waters because of the high winds accompanying the dust storm events.  相似文献   

17.
The diffusive component of the particulate organic carbon (POC) export from the ocean's surface layer has been estimated using a combination of the mixed layer model and SeaWiFS ocean color data. The calculations were carried out for several example sites located in the North Atlantic over a 10-year time period (1998–2007). Satellite estimates of surface POC derived from ocean color were applied as an input to the model driven by local surface heat and momentum fluxes. For each year of the examined period, the diffusive POC flux was estimated at a 200 m depth. The highest flux is generally observed in the spring and fall seasons, when surface waters are weakly stratified. In addition, the model results demonstrate significant interannual and geographical variability of the flux. The highest diffusive POC flux occurs in the northern North Atlantic and the lowest in the subtropical region. The interannual variability of the diffusive POC flux is associated with mixed layer dynamics and underscores the importance of atmospheric forcing for POC export from the surface layer to the ocean's interior.  相似文献   

18.
Bio-acoustic surveys and associated zooplankton net tows have documented anomalously high concentrations of zooplankton within a 100 m layer above the hydrothermal plumes at Endeavour Segment, Juan de Fuca Ridge. These and other data suggest that congregating epi-plume zooplankton are exploiting a food substrate associated with the hydrothermal plume. Ascending, organic-rich particles could provide a connection. Consequently, two paired sequentially sampling ascending and descending particle flux traps and a current meter were deployed on each of three moorings from July 1994 to May 1995. Mooring sites included an on-axis site (OAS; 47°57.0′N, 129°05.7′W) near the main Endeavour vent field, a “down-current” site 3 km west of the main vent field (WS), and a third background station 43 km northeast of the vent field (ES). Significant ascending and descending particle fluxes were measured at all sites and depths. Lipid analyses indicated that ascending POC was derived from mid-depth and deep zooplankton whereas descending POC also contained a component of photosynthetically derived products from the sea surface. Highest ascending POC fluxes were found at the hydrothermal plume-swept sites (OAS and WS). The limited data available, however, precludes an unequivocal conclusion that hydrothermal processes contribute to the ascending flux of organic carbon at each site. Highest ascending to descending POC flux ratios were also found at WS. Observed trends in POC, PMn/PTi, and PFe/PTi clearly support a hydrothermal component to the descending flux at the plume-swept WS site (no descending data was recovered at OAS) but not at the background ES site. Alternative explanations for ascending particle data are discussed. First-order calculations for the organic carbon input (5–22 mg C m−2 d−1) required to sustain observed epi-plume zooplankton anomalies at Endeavour are comparable both to measured total POC flux to epi-plume depths (2–5 mg C m−2 d−1: combined hydrothermal and surface derived organic carbon) and to estimates of the total potential in situ organic carbon production (2–9 mg C m−2 d−1) from microbial oxidation of hydrothermal plume H2, CH4 and NH4+.  相似文献   

19.
The concentration of dissolved and particulate Re have been measured in the Narmada, Tapi and the Mandovi estuaries in the Arabian Sea and the Hooghly estuary in the Bay of Bengal. Re concentration in water and particulate matter of these estuaries is highly variable. Re in river waters analysed varies from 1 to 41 pmol/kg, the lowest in the Mandovi and the highest in the Mahi river. Re concentrations in the rivers analysed except in the Mandovi river are higher than the average global riverine Re concentration of 2.1 pmol/kg. Based on this study and the available data, the contemporary global annual flux of dissolved riverine Re is estimated to be ~ 350 × 103 mol with an average concentration of ~ 9.2 pmol/kg, much higher than the earlier estimates. Residence time of Re in the oceans based on this estimate is 175,000 years, ~ 4 times lower compared to earlier estimates. Re behaves conservatively in all the estuaries studied. Re concentrations of seawater in the Bay of Bengal and in the Arabian Sea, estimated from the data of the Hooghly and the Mandovi estuaries respectively are ~ 40 pmol/kg, similar to the open ocean Re values of the Arabian Sea measured in this study and the values reported for in other oceanic regions. However, the dissolved Re in the Gulf of Cambay is 2 to 5 times higher, consistent with the high Re measured in the Mahi estuary and in the coastal waters of the Gulf of Cambay. The source of high Re in the Gulf of Cambay seems to be anthropogenic, measurements of Re in rivers and industrial waste waters draining into the Gulf supply amount to ~ 2300 mol of Re annually. This anthropogenic supply coupled with high residence time of water in the Gulf contribute to its high Re. Re concentration in suspended sediments of the Narmada estuary varies from 1 to 2 pmol/g, and does not show any discernible trend with salinity.The contemporary global riverine Re supply to the oceans estimated in this study is ~ 2–4 times higher compared to its removal in the reducing (anoxic/suboxic) sediments, indicating non-steady state of Re in the ocean. High dissolved riverine Re flux coupled with high Re content in the Gulf of Cambay highlights the need of a detailed study of Re in the various global rivers and in oceans including coastal regions and semi enclosed basins of the world to understand its behaviour in various reservoirs and to constrain the residence time of Re in the ocean.  相似文献   

20.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号