首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.  相似文献   

2.
3.
Polarized radio emission is detected at various scales in the Universe. In this document, I will briefly review our knowledge on polarized radio sources in galaxy clusters and at their outskirts, emphasizing the crucial information provided by the polarized signal on the origin and evolution of such sources. Successively, I will focus on Abell 2255, which is known in the literature as the first cluster for which filamentary polarized emission associated with the radio halo has been detected. By using RM synthesis on our multi-wavelength WSRT observations, we studied the 3-dimensional geometry of the cluster, unveiling the nature of the polarized filaments at the borders of the central radio halo. Our analysis points out that these structures are relics lying at large distance from the cluster center.  相似文献   

4.
Recent improvements in the capabilities of low-frequency radio telescopes provide a unique opportunity to study thermal and non-thermal properties of the cosmic web. We argue that the diffuse, polarized emission from giant radio relics traces structure formation shock waves and illuminates the large-scale magnetic field. To show this, we model the population of shock-accelerated relativistic electrons in high-resolution cosmological simulations of galaxy clusters and calculate the resulting radio synchrotron emission. We find that individual shock waves correspond to localized peaks in the radio surface brightness map which enables us to measure Mach numbers for these shocks. We show that the luminosities and number counts of the relics strongly depend on the magnetic field properties, the cluster mass and dynamical state. By suitably combining different cluster data, including Faraday rotation measures, we are able to constrain some macroscopic parameters of the plasma at the structure formation shocks, such as models of turbulence. We also predict upper limits for the properties of the warm-hot intergalactic medium, such as its temperature and density. We predict that the current generation of radio telescopes [Low-Frequency Array (LOFAR), Giant Meter Radio Telescope (GMRT), the Murchison Wide-field Array (MWA) and Long Wavelength Array (LWA)] have the potential to discover a substantially larger sample of radio relics, with multiple relics expected for each violently merging cluster. Future experiments [(Square Kilometre Array (SKA)] should enable us to further probe the macroscopic parameters of plasma physics in clusters.  相似文献   

5.
The epoch of reionization (EoR) sets a fundamental benchmark in cosmic structure formation, corresponding to the formation of the first luminous objects that act to ionize the neutral intergalactic medium (IGM). Recent observations at near-IR and radio wavelengths imply that we are finally probing into this key epoch of galaxy formation at z 6. The Square Kilometer Array (SKA) will provide critical insight into the EoR, in a number of ways. First, the ability of the SKA to image the neutral IGM in 21-cm emission is a truly unique probe of the process of reionization, and is recognized as the next necessary and fundamental step in our study of the evolution of large scale structure and cosmic reionization. Second, study of HI 21-cm absorption toward the first radio loud objects probes small to intermediate scale structure in the neutral ‘cosmic web’, as well as HI in the first collapsed structures (proto-disks and mini-halos). And third, the incomparable sensitivity of the SKA allows for the study of the molecular gas, dust, and star formation activity in the first galaxies, as well as the radio continuum emission from the first accreting massive black holes. Such objects will be obscured at optical wavelengths due to absorption by the neutral IGM.  相似文献   

6.
High sensitivity observations of radio halos in galaxy clusters at frequencies ν ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, morphology and spectral properties. All clusters belonging to the GMRT Radio Halo Survey with detected or candidate cluster-scale diffuse emission have been imaged at 325 MHz with the GMRT. Few of them were also observed with the GMRT at 240 MHz and 150 MHz. For A 1682, imaging is particularly challenging due to the presence of strong and extended radio galaxies at the center. Our data analysis suggests that thew radio galaxies are superposed to very low surface brightness radio emission extended on the cluster scale, which we present here.  相似文献   

7.
Radio relics in galaxy clusters can be electrons accelerated at cluster merger shocks or adiabatically compressed fossil radio cocoons or dying radio galaxies. The spectral evolution of radio relics is affected by the surrounding thermal plasma. We present a low frequency study of three radio relics representing environments of dense cluster core (A4038), cluster outskirts (A1664) and filaments (A786). The properties of the relics are found to be consistent with the effect of confinement by external medium if the effects of projection are ignored.  相似文献   

8.
We discuss the statistical properties of the radio halo population in galaxy clusters. Radio bi-modality is observed in galaxy clusters: a fraction of clusters host giant radio halos while a majority of clusters do not show evidence of diffuse cluster-scale radio emission. The radio bi-modality has a correspondence in terms of dynamical state of the hosting clusters showing that merging clusters host radio halos and follow the well-known radio-X-ray correlation, while more relaxed clusters do not host radio halos and populate a region well separated from that correlation. These evidences can be understood in the framework of a scenario where merger-driven turbulence re-accelerate the radio emitting electrons. We discuss the main statistical expectations of this scenario underlining the important role of the upcoming LOFAR surveys to test present models.  相似文献   

9.
The Australian SKA Pathfinder (ASKAP) is a new radio-telescope being built in Western Australia. One of the key surveys for which it is being built is EMU (Evolutionary Map of the Universe), which will make a deep (∼10 μJy/bm rms) radio continuum survey covering the entire sky as far North as +30°. EMU may be compared to the NRAO VLA Sky Survey (NVSS), except that it will have about 45 times the sensitivity, and five times the resolution. EMU will also have much better sensitivity to diffuse emission than previous large surveys, and is expected to produce a large catalogue of relics, tailed galaxies, and halos, and will increase the number of known clusters by a significant factor. Here we describe the EMU project and its impact on the astrophysics of clusters.  相似文献   

10.
Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of turbulent (re)acceleration of relativistic particles allow good correspondence with present observations, from radio halos to γ-ray upper limits, although several aspects of this complex scenario still remain poorly understood.  相似文献   

11.
Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.  相似文献   

12.
Lofar     
H01 A first glance at LOFAR: Experience with the Initial Test Station H02 The Square Kilometer Array (SKA) – Status and Prospects H03 LOFAR calibration: confrontation with real WSRT data H04 Simulations of magnetic fields in the cosmos H05 RM structure in the polarized synchrotron emission from our Galaxy and the Perseus cluster of Galaxies H06 Mapping the Reionization Era through the 21 cm Emission Line H07 Spiral galaxies seen with LOFAR H08 Software Infrastructure for Distributed Data Processing H09 The Low Frequency Array (LOFAR) – Status and Prospects H10 Coincident cosmic ray measurements with LOPES and KASCADE‐Grande H11 Radio relics in a cosmological cluster merger simulation H12 Detection of radio pulses from cosmic ray air showers with LOPES H13 Geosynchrotron radio emission from extensive air showers H14 Imaging capabilities of future radio telescopes H15 Digital signal processing system of Multi‐Beam Meter Wavelengths Array. H16 The Multi‐Beam Meter Wavelengths Array H17 Monitoring of the Solar Activity by LOFAR H18 Calibration of LOPES30 H19 An Outreach Project for LOFAR and Cosmic Ray Detection H20 Galactic tomography based on observations with LOFAR and Effelsberg H21 150 MHz observations with the Westerbork and GMRT radio telescopes of Abell 2256 and the Bootes field: Ultra‐steep spectrum radio sources as probes of cluster and galaxy evolution H22 Experience of simultaneous observations with two independent multi‐beams of the Large Phased Array H23 GRID Computing at Forschungszentrum Karlsruhe suitable for LOFAR  相似文献   

13.
1 INTRODUCTION Over the past years, diffuse radio halos have been detected in a few tens of nearby, richclusters. They often extend to a distance of 1 Mpc from the cluster centers, and have regularshape, low surface brightness and steep radio spectrum. Some clusters also contain peculiarradio structures called radio relics. Both radio halos and relics are believed to arise from themerging of sub-cluster structures (Buote 2001). The first radio halo, Coma C, was detected about 30 years a…  相似文献   

14.
Galaxy clusters grow by mergers with other clusters and galaxy groups. These mergers create shocks within the intracluster medium (ICM). It is proposed that particles can be accelerated to extreme energies within the shocks. In the presence of a magnetic field these particles should then form large regions emitting synchrotron radiation, creating the so-called radio relics. An example of a cluster with relics is CIZA J2242.8+5301. Here we present hydrodynamical simulations of idealized binary cluster collisions with the aim of constraining the merger scenario for this cluster. We conclude that by using the location, size and width of double radio relics we can set constraints on the mass ratios, impact parameters, time scales, and viewing geometries of binary cluster merger events.  相似文献   

15.
A radio survey, using the Very Large Array at 20 and 90 cm λ has been carried out in the direction of 46 distant Abell clusters (0.1 ≲ z ≲ 0.3) dominated by a cD galaxy (clusters classified to be Bautz-Morgan I type). A radio source coincident with the cD galaxy was detected in 16 clusters. We find that the radio luminosity function of the cD galaxies at 20cm λ, and below the luminosityP 1.4ghz ≲ 1024.5 W Hz-1, is similar to that of brightest ellipticals in less clustered environments. Above this luminosity, the cDs seem to have a higher probability of becoming radio sources. The effect of optical brightness on radio emission is shown to be the same for the two classes. No significantly large population of very-steep-spectrum sources with spectral index α >1.2 (flux density ∝ frequency) was found to be associated with cD galaxies. A significant negative correlation is found between the radio luminosity of the cD galaxy and the cooling-time of the intra cluster medium near the galaxy. We also present evidence that the probability of radio emission from first-ranked galaxies is dependent upon their location relative to the geometrical centres of clusters and thus related to the morphological class and the evolutionary state of the clusters. We argue that both these effects are primarily caused by the dynamical evolution of these distant clusters of galaxies.  相似文献   

16.
We present 5.5 and 9.0 GHz Australia Telescope Compact Array (ATCA) observations of the cluster MACSJ0417.5-1154, one of the most massive galaxy clusters and one of the brightest in X-ray in the Massive Cluster Survey (MACS). We estimate diffuse emission at 5.5 and 9.0 GHz from our ATCA observations, and compare the results with the 235 MHz and 610 MHz GMRT observations and 1575 MHz VLA observations. We also estimate the diffuse emission at low frequencies from existing GLEAM survey data (using the MWA telescope (http://www.mwatelescope.org)), and find that the steepening reported in earlier studies may have been an artefact of underestimates of diffuse emission at low frequencies. High-frequency radio observations of galaxy cluster mergers therefore provide an important complement to low-frequency observations, not only for a probing the ‘on’ and ‘off’ state of radio halos in these mergers, but also to constrain energetics of cluster mergers. We comment on the future directions that further studies of this cluster can take.  相似文献   

17.
Clusters of galaxies in which radio emission at low frequencies (178 MHz) has been detected were classified on the Bautz-Morgan (BM) system according to the dominance of the brightest galaxy. Radio sources with steep low-frequency spectra occur in clusters of all BM types but more often in rich clusters; the distributions of BM types for clusters with high and low spectral indices between 38 and 178 MHz are similar. Glass copies of Mount Palomar Sky Survey plates were measured to determine the distribution of the ten brightest galaxies in clusters without dominant galaxies. Some clusters were found to have central cores of bright galaxies which may reflect mass segregation of galaxies due to dynamical friction. The bright galaxies in such cores may later merge to form dominant cD galaxies. The positions of the cD galaxies and cores of bright galaxies are often at projected distances <200 kpc from the low-frequency radio emission. The low-frequency spectrum of radio emission associated with a cD galaxy may be either steep or normal, but the low-frequency spectrum from a core of bright galaxies is usually steep. A steep spectrum may develop when a radio source is confined by hot gas in a cluster over a long period (109 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed.  相似文献   

18.
The radio properties ofUhuru X-ray sources with fairly certain extragalactic identifications are described briefly. Radio to X-ray flux ratios are low for rich clusters of galaxies and high for double radio sources. There is some evidence from the Abell 426 (Perseus) and Abell 1367 clusters that a radio galaxy in a rich cluster may be the centre of extended X-ray emission. Nuclei of galaxies have an enormous range in X-ray luminosity; the known range is from 1030 W for our galaxy to 3×1038 W for 3C 273. Unidentified X-ray sources at high galactic latitudes may include new classes of objects with very low radio to X-ray flux ratios or hard X-ray emission.  相似文献   

19.
We present the results of a 22-cm radio survey carried out with the Australia Telescope Compact Array (ATCA) covering the A3558 complex, a chain formed by the merging ACO clusters A3556–A3558–A3562 and the two groups SC 1327−312 and SC 1323−313, located in the central region of the Shapley Concentration. The purpose of our survey is to study the effects of cluster mergers on the statistical properties of radio galaxies and to investigate the connection between mergers and the presence of radio haloes and relic sources.
We found that the radio source counts in the A3558 complex are consistent with the background source counts. The much higher optical density compared with the background is not reflected as a higher density of radio sources. Furthermore, we found that no correlation exists between the local density and the radio source power, and that steep-spectrum radio galaxies are not segregated in denser optical regions.
The radio luminosity function for elliptical and S0 galaxies is significantly lower than for cluster early-type galaxies and for those not selected to be in clusters at radio powers log  P 1.4≳22.5, implying that the probability of a galaxy becoming a radio source above this power limit is lower in the Shapley Concentration compared with any other environment. Possible explanations will be presented.
The detection of a head–tail source in the centre of A3562, coupled with careful inspection of the 20-cm NRAO VLA Sky Survey (NVSS) and of 36-cm MOST observations, allowed us to spot two extended sources in the region between A3562 and SC 1329−313, i.e. a candidate radio halo at the centre of A3562 and low brightness extended emission around a 14.96-mag Shapley galaxy. The relation between these two extended galaxies and the ongoing group merger in this region of the Shapley Concentration are discussed.  相似文献   

20.
As part of an extensive radio–IR–optical–X-ray study of ROSAT clusters of galaxies in the Hydra region we have observed the bimodal Abell cluster A3528, located in the core of the Shapley Supercluster ( z  ≃ 0.053), with the Molonglo Observatory Synthesis Telescope at 843 MHz and the Australia Telescope Compact Array at 1.4 and 2.4 GHz. This is part I in a series of papers which looks at the relationship between the radio and X-ray emission in samples of ROSAT selected clusters.   The radio source characteristics — tailed morphologies and steep spectra — are consistent with the effects of a dense intracluster medium and the pre-merging environment of A3528. In particular, we present evidence that the minor member of the radio-loud dumbbell galaxy located at the centre of the northern component of A3528 is on a plunging orbit. We speculate that this orbit may have been induced by the tidal interactions between the merging components of A3528. In addition, the radio source associated with the dominant member of the dumbbell galaxy exhibits many of the characteristics of compact steep spectrum sources. We argue that the radio emission from this source was triggered ∼ 106 yr ago by tidal interactions between the two members of the dumbbell galaxy, strengthening the argument that compact steep spectrum (CSS) sources are young.   Re-analysis of archive pointed Position Sensitive Proportional Counter (PSPC) data using multiresolution filtering suggests the presence of an AGN and/or a cooling flow in the southern component of A3528.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号