首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B?i?a-?tei mine is an open pit mine in NW Romania (West Carpathian Mountains). It was the largest surface uranium deposit in the world. Two means of uranium transport and dissemination were used over time. The first was the natural way, represented by transportation of geological sediments by Cri?ul-B?i?a River that crosses the B?i?a surface deposit. These sediments were used as building materials (stone, gravel, sand). The second way was related to the people living in this valley, who used also the uranium waste as building material. The preliminary indoor radon concentrations measured in the buildings ranged from 40 to 4000 Bq m?3 with a mean value of 241 Bq m?3. A focused radon survey facilitated the selection of 20 houses with the highest indoor radon that were therefore proposed for remediation. To find the radon sources of these houses, systematic investigations on radon were performed. The remedial measures for these 20 houses were tested on a chosen pilot house.  相似文献   

2.
Radon in the Earth’s crust or soil matrix is free to move only if its atoms find their way into pores or capillaries of the matrix. 222Rn atoms from solid mineral grains get into air, filling pores through emanation process. Then 222Rn enters into the atmosphere from air-filled pores by exhalation process. The estimation of radon flux from soil surface is an important parameter for determining the source term for radon concentration modeling. In the present investigation, radon fluxes and soil-gas radon concentration have been measured along and around the Main Central Thrust (MCT) in Uttarkashi district of Garhwal Himalaya, India, by using Scintillation Radon Monitor (SRM) and RAD7 devices, respectively. The soil radon gas concentration measured by RAD7 with soil probe at the constant depth was found to vary from 12 ± 3 to 2330 ± 48 Bq·m?3 with geometrical mean value of 302 ± 84 Bq·m?3. Th significance of this work is its usefulness from radiation protection point of view.  相似文献   

3.
This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard Hex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg?1). Soil radon (4671 Bq m?3) and radon in air (14.77 Bq m?3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg?1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg?1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h?1) was slightly higher than average value of 57 nGy h?1 (~?45% from 40K), and that of AGDE (444 μSv year?1) was higher than worldwide average reported value (300 μSv year?1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.  相似文献   

4.
In the past decade many international studies have established that the radioactive gas radon is responsible to a large extent for the radiation dose absorbed by the population. Consequently the Swiss Federal Health Office started and sponsored a research program called RAPROS (Radon Programm Schweiz, 1987–1991) to assess the relevant aspects of radon exposure in Switzerland.The average indoor radon concentration in Swiss living rooms is about 60–70 Bq m−3, this corresponds to an annual dose of about 2.2 mSv, but values largely exceeding 1000 Bq m−3 were also found. Often very strong temporal fluctuations of indoor radon concentrations were measured.The ground directly underneath buildings is the main radon source of indoor radon. The material properties that influence the radon production and transport in soils are: radium content, emanating coefficient and soil gas permeability; among them only the last one can vary over many orders of magnitude. The permeability is consequently the decisive factor that enables radon transport in the subsurface. To characterize the radon potential of soils a radon availability index (rav) was introduced.Our investigations have also shown that in karst systems the radon concentration in the air is often increased to 10–100 times higher than in buildings. This radon-charged air is able to travel over considerable distances through faults and cavities in the underground and reach living rooms built over karstified areas.  相似文献   

5.
Summary Radon (Rn222) profiles were made over southwest Arizona from 300 m to 4km altitude. A temperature inversion near 2000 m and a stable radon concentration averaging 32.0 pc m–3 at 2000 m were characteristic of morning flights. At 300 m there was a definite pattern of high radon concentrations in the early morning and lower concentrations by noon. At 760 m the radon concentration increased between the times of ascent and descent. This pattern resulted from the trapping of radon close to the ground during stable night-time conditions and its subsequent upward dispersal with solar heating. The day-to-day variation in radon concentrations at higher levels cannot be attributed to local upward transport by diffusion but must have resulted from larger scale circulations. Above 2000 m there are no conclusive differences between morning, afternoon and evening profiles. Low concentrations of radon were measured during one late evening profile when there was definite subsidence and advection of drier air into the region.  相似文献   

6.
Studies on the 222Rn content of groundwater were conducted to obtain knowledge of its distribution in the geosphere just below ground surface and below the depth of 100 m in the Osaka Group (Plio-Pleistocene). Samples analyzed from ten bore holes within 10 m depth below land surface showed that a sandy layer contained groundwater with consistent radon concentrations except for a few locations where the variations in the water level were large due to precipitation and/or the water level was within 2 m of ground surface. The average 222Rn concentration in groundwater within 10 m of land surface was found to be approximately equal to 13 to 35 of the highest concentration found in groundwater from a well penetrating 100–200 m (420 pCi/l?1).  相似文献   

7.
Radon can be used as a naturally occurring tracer for environmental processes. By means of grab-sampling or continuous monitoring of radon concentration, it is possible to assess several types of dynamic phenomena in air and water. We present a review of the use of radon and its progeny at the University of Cantabria. Radon can be an atmospheric dynamics indicator related with air mass interchange near land-sea discontinuities as well as for the study of vertical variations of air parameters (average values of different types of stability: 131–580 Bq m?3). Concerning indoor gas, we present some results obtained at Altamira Cave (Spain): from 222 to 6549 Bq m?3 (Hall) and from 999 to 6697 Bq m?3 (Paintings Room). Finally, variations of radon concentration in soil (0.3 to 9.1 kBq m?3) and underground water (values up to 500 Bq l?1) provide relevant information about different geophysical phenomena.  相似文献   

8.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

9.
In the present study, experiments have been carried out to calibrate LR-115 alpha detector films in bare and cup-mode exposure for the measurement of radon and thoron concentrations in soil gas. Results showed non-uniformity in track formation on the films in bare-mode exposure. However, in cup-mode exposure the non-uniformity was reduced to a greater extent. The calibration factors obtained for radon in bare- and cup-mode exposures are 0.049 and 0.034 tr. cm?2 per Bq m?3 d, respectively. An attempt has been made to calibrate the radon-thoron discriminative cup with LR-115 films for simultaneous measurements of radon and thoron. This paper also presents the preliminary results of radonthoron monitoring in Tatun volcanic areas of northern Taiwan for the first time using radon-thoron discriminators with LR-115 films. The results show that the safe temperature to install the LR-115 films in volcanic areas is ≤ 65°C and thoron concentration in the study area is low.  相似文献   

10.
本文介绍了地震氡观测仪计量检定系统(氡室)的建设背景及结构组成。氡室具有氡体积活度(氡浓度)实时监测、动态补氡、氡期望值可调、稳定性好等特点。在氡室调试实验中进行了氡室的漏气率实验及4次补氡实验,计算出氡室的氡漏气率为0.0001393Bq/min,氡发生率为23.35Bq/min。根据《测氡仪检定规程》(JJG 825—2013)的技术要求进行计量效能验证,表明氡室的氡体积活度(氡浓度)为800Bq/m3、1500Bq/m3、3000Bq/m3、6000Bq/m3和15000Bq/m3时,连续8h稳定性均优于5%;为6000Bq/m3时,72h稳定性优于5%,符合国家计量技术规范对氡室计量标准的要求。  相似文献   

11.
Radon (222Rn) concentration in geothermal waters and CO2-rich cold springwaters collected weekly in duplicate samples from four stations in northern Taiwan were measured from July 1980 to December 1983. Seven spike-like radon anomalies (increases of 2 to 3 times the standard deviation above the mean) were observed at three stations. Following every anomaly except one, an earthquake ofM L above 4.6 occurred within 4 to 51 days, at an epicentral distance 14 to 45 km, and at a focal depth of less than 10 km. The distribution of the earthquakes preceded by radon anomalies is skewed in certain directions from the radon stations; the radon stations seem to be insensitive to earthquakes occurring in the other directions. At the fourth station, near a volcanic area, much gas (mainly CO2) is discharged from the well, together with hot water. A very high concentration of radon was detected in the discharged gas; therefore trapping of gas in the water can result in anomalously high radon contents. According to limited measurements, the radon concentration in water appears to be undersaturated with respect to that in gas. This suggests that hot water is very susceptible to radon loss, and monitoring of radon in gas is more desirable.  相似文献   

12.
A method is presented to evaluate ground water residence time in a zero‐valent iron (ZVI) permeable reactive barrier (PRB) using radon‐222 (222Rn) as a radioactive tracer. Residence time is a useful indicator of PRB hydraulic performance, with application to estimating the volumetric rate of ground water flow through a PRB, identifying flow heterogeneity, and characterizing flow conditions over time as a PRB matures. The tracer method relies on monitoring the decay of naturally occurring aqueous 222Rn as ground water flows through a PRB. Application of the method at a PRB site near Monticello, Utah, shows that after 8 years of operation, residence times in the ZVI range from 80 to 486 h and correlate well with chemical parameters (pH, Ca, SO4, and Fe) that indicate the relative residence time. Residence times in this case study are determined directly from the first‐order decay equation because we show no significant emanation of 222Rn within the PRB and no measurable loss of 222Rn other than by radioactive decay.  相似文献   

13.
Vertical eddy diffusivities (Kv's) have been estimated at fourteen widely separated locations from fourteen222Rn profiles and two228Ra profiles measured near the ocean floor as part of the Atlantic and Pacific GEOSECS programs. They show an inverse proportionality to the local buoyancy gradient [(g/?)(??pot/?z)] calculated from hydrographic measurements. The negative of the constant of proportionality is the buoyancy flux [?Kv(g/?)(??pot/?z)] which has a mean of ?4 × 10?6 cm2/sec3. Our results suggest that the buoyancy flux varies very little near the ocean floor. Kv's for the interior of the deep Pacific calculated from the relationship Kv = (4 × 10?6cm2/sec3)/[(g/?)(??pot/?z)] agree well with published estimates. Kv's calculated for the pycnocline are one to two orders of magnitude smaller than upper limits estimated from tritium and7Be distributions.Heat fluxes calculated with the model Kv's obtained from the222Rn profiles average 31 μcal cm?2 sec?1 in the Atlantic Ocean and 8 μcal cm?2 sec?1 in the Pacific Ocean.  相似文献   

14.
In the Long Valley caldera, where seismicity has continued essentially uninterrupted since mid-1980 and uplift is documented, samples of water from hot, warm, and cold springs have been collected since September, 1982, and their222Rn concentrations analyzed. Concurrently, rocks encompassing the hydrologic systems feeding the springs were analyzed for their radioelement contents, because their uranium is the ultimate source of the222Rn in the water.The222Rn concentration in the springs varies inversely with their temperature and specific conductance. High concentrations (1500 to 2500 picocuries per liter) occur in dilute cold springs on the margins of the caldera, while low contents (12 to 25 pCi/l) occur in hot to boiling springs. Springwater radon concentrations also correlate slightly with the uranium content of the encompassing rocks.A continuous monitoring system was installed in August, 1983, at a spring issuing from basalt, to provide hourly records of radon concentration. A gamma detector is submerged in a natural pool, and we have observed that the radioactivity measured in this manner is due almost entirely to the222Rn concentration of the water. Initial operation shows diurnal and semidiurnal variations in the222Rn concentration of the springwater that are ascribed to earth tides, suggesting that those variations are responding to small changes in stress in the rocks encompassing the hydrologic system.  相似文献   

15.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The crack opening displacement in the ground floor beam of a skeleton-type building on piles and lateral earth pressure between the piles were measured for a long time. In parallel we measured radon and thoron volumetric activity in the soil air samples in the building basement and in the box containing soil fragment. Two time intervals, when the crack opening expanded rapidly due to uneven subsidence of supporting columns, were established. Volumetric activity of radon entering from the soil basement and parent matter fragment was anomalous. Tidal, cyclonic, or technogenic deformations could be the cause of observed phenomena. According to the time series analysis, variability in atmospheric parameters such as pressure, temperature, and air humidity made geodynamic monitoring by radon emanations hard. Influence of described factors on measured parameters is still a matter of debate.  相似文献   

17.
Abstract

When the Thomas Creek, Arizona, USA, watershed was logged for the first time, the latest state-of-the-art harvesting was applied. Trees were cut in patches and by group selection, and logs skidded by crawler tractor. Although overland flow and sediment delivery, measured on small sub-drainages of the watershed, were inconsequential, sediment deliveries from severely disturbed areas and undisturbed forest floor were significantly different (41 and 6 kg ha?1 year?1, respectively). The highest erosion rates (128 kg ha?1 year?1) were created by monitoring activities which entailed the use of over-snow vehicles and trail bikes. Nearly instantaneous rises in the hydrograph at the start of storms were caused by pipe flows. Significant increases of flow volumes and peak flows after timber harvest increased magnitudes of channel adjustment processes (erosion) that had existed already before logging. This development was judged positively, because it suggests more rapid attainment of a new dynamic equilibrium. The study demonstrated that mixed conifer forests can be harvested without detrimental effects on the watershed if state-of-the-art techniques are used.  相似文献   

18.
One of the most severe industrial catastrophes happened in Kolontár, Hungary, on 4 October 2010. Red mud (bauxite residue) broke through the eroded wall of the red mud reservoir pond “Number X” and flooded the surrounding area. This led to the instant death of 10 people and the injury of more than 100 people. Red mud is enriched in radium and thorium isotopes; therefore, there is a chance that this flooding will increase radionuclide concentrations of soils and also in air. In this study we have examined the site to assess the realistic radiological risks. For the risk assessment the following parameters were determined: gamma dose rate, radon concentration, radionuclide concentration of red mud and air dust concentration. It was found that the radiation dose exposure resulting from red mud contamination was < 0.045 mSv y?1 (excluding radon), which can be considered negligible when compared to the average annual effective dose from natural sources (2.4 mSv y?1).  相似文献   

19.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

20.
Post‐fire rehabilitation treatments are commonly implemented after high‐severity wildfires, but few data are available about the efficacy of these treatments. This study assessed post‐fire erosion rates and the effectiveness of seeding, straw mulching, and contour felling in reducing erosion after a June 2000 wildfire northwest of Loveland, Colorado. Site characteristics and sediment yields were measured on 12 burned and untreated control plots and 22 burned and treated plots from 2000 to 2003. The size of the hillslope plots ranged from 0·015 to 0·86 ha. Sediment yields varied significantly by treatment and were most closely correlated with the amount of ground cover. On the control plots the mean sediment yield declined from 6–10 Mg ha?1 in the first two years after burning to 1·2 Mg ha?1 in 2002 and 0·7 Mg ha?1 in 2003. Natural regrowth caused the amount of ground cover on the control plots to increase progressively from 33% in fall 2000 to 88% in fall 2003. Seeding had no effect on either the amount of ground cover or sediment yields. Mulching reduced sediment yields by at least 95% relative to the control plots in 2001, 2002, and 2003, and the lower sediment yields are attributed to an immediate increase in the amount of ground cover in the mulched plots. The contour‐felling treatments varied considerably in the quality of installation, and sediment storage capacities ranged from 7 to 32 m3 ha?1. The initial contour‐felling treatment did not reduce sediment yields when subjected to a very large storm event, but sediment yields were significantly reduced by a contour‐felling treatment installed after this large storm. The results indicate that contour felling may be able to store much of the sediment generated in an average year, but will not reduce sediment yields from larger storms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号