首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

2.
In this paper, an analytical method is proposed to determine the dynamic response of 3‐D rectangular liquid storage tanks with four flexible walls, subjected to horizontal seismic ground motion. Fluid–structure interaction effects on the dynamic responses of partially filled fluid containers, incorporating wall flexibility, are accounted for in evaluating impulsive pressure. The velocity potential in which boundary conditions are satisfied is solved by the method of separation of variables using the principle of superposition. The impulsive pressure distribution is then computed. Solutions based on 3‐D modeling of the rectangular containers are obtained by applying the Rayleigh–Ritz method using the vibration modes of flexible plates with suitable boundary conditions. Trigonometrical functions that satisfy boundary conditions of the storage tank such that the flexibility of the wall is thoroughly considered are used to define the admissible vibration modes. The analysis is then performed in the time domain. Moreover, an analytical procedure is developed for deriving a simple formula that evaluates convective pressure and surface displacements in a similar rigid tank. The variation of dynamic response characteristics with respect to different tank parameters is investigated. A mechanical model, which takes into account the deformability of the tank wall, is developed. The parameters of such a model can be obtained from developed charts, and the maximum seismic loading can be predicted by means of a response spectrum characterizing the design earthquake. Accordingly, a simplified but sufficiently accurate design procedure is developed to improve code formulas for the seismic design of liquid storage tanks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

4.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

5.
中国核电厂抗震设计规范推荐采用的Housner模型不适用于复杂形状核电储液结构的流固耦合分析。对于AP1000和CAP1400核电站屏蔽厂房顶部非能动安全壳冷却系统重力水箱(简称PCS水箱),基于圆柱形水箱的Housner等效质量-弹簧模型,通过引入水箱体积修正参数,提出PCS水箱的三维等效质量-弹簧模型。采用有限元软件ADINA建立水箱结构流固耦合整体有限元模型以进行模态分析,计算分析PCS水箱和对应环形水箱在不同尺寸和液体深度条件下的液体晃动自振特性。对比整体有限元模型与三维等效质量-弹簧模型计算结果发现,提出的PCS水箱三维等效质量-弹簧模型能给出其内液体晃动各阶振型的液动压力合理估计值,适用于具有复杂形状的PCS水箱液动压力分析。本文的等效模型方法可推广应用于其他复杂形状水箱的液动压力分析。  相似文献   

6.
In this paper, a study on the transient response of an elastic structure embedded in a homogeneous, isotropic and linearly elastic half-plane is presented. Transient dynamic and seismic forces are considered in the analysis. The numerical method employed is the coupled Finite-Element–Boundary-Element technique (FE–BE). The finite element method (FEM) is used for discretization of the near field and the boundary element method (BEM) is employed to model the semi-infinite far field. These two methods are coupled through equilibrium and compatibility conditions at the soil–structure interface. Effects of non-zero initial conditions due to the pre-dynamic loads and/or self-weight of the structure are included in the transient boundary element formulation. Hence, it is possible to analyse practical cases (such as dam–foundation systems) involving initial conditions due to the pre-seismic loads such as water pressure and self-weight of the dam. As an application of the proposed formulation, a gravity dam has been analysed and the results for different foundation stiffness are presented. The results of the analysis indicate the importance of including the foundation stiffness and thus the dam–foundation interaction.  相似文献   

7.
A hybrid analytical and FEM is proposed to investigate the nonlinear sloshing in a floating‐roofed oil storage tank under long‐period seismic ground motion. The tank is composed of a rigid cylindrical wall and a flat bottom, whereas the floating roof is treated as an elastic plate undergoing large deflection. The contained liquid is assumed to be inviscid and incompressible, and the flow is assumed to be irrotational. The method of analysis is based on representation of the liquid motion by superposing the analytical modes that satisfy the Laplace equation and the rigid wall and bottom boundary conditions. The FEM is then applied to solve the remaining kinematic and dynamic boundary conditions at the moving liquid surface coupled with the nonlinear equation of motion of the floating roof. This requires only the discretization of the liquid surface and the floating roof into finite elements, thus leading to a computationally efficient and accurate method compared with full numerical analysis. As numerical examples to illustrate the applicability of the proposed method, two oil storage tanks with single‐deck type floating roofs damaged during the 2003 Tokachioki earthquake are studied. It is shown that the nonlinear oscillation modes with the circumferential wave numbers 0, 2 and 3 caused by the finite liquid surface elevation as well as the membrane action due to large deflection of the deck produce excessively large stresses in the pontoon, which may cause the catastrophic failure of pontoon followed by the submergence of the roof. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A numerical and experimental study on the sloshing behaviours of cylindrical and rectangular liquid tanks is addressed. A three‐dimensional boundary element method for space with the second‐order Taylor series expansion in time is established to simulate the sloshing phenomenon and its related physical quantities inside a liquid tank subjected to horizontal harmonic oscillations or recorded earthquake excitations. The small‐scale model experiments are carried out to verify some results of numerical methods in this study. The comparisons between numerical and experimental results show that the numerical method is reliable for both kinds of ground excitations. Finally, the water wave and the base shear force of a rectangular tank due to harmonic excitation are also presented at different frequencies. A huge cylindrical water tank subjected to a recorded earthquake excitation is used for application and discussion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Main purpose of this study is to evaluate the dynamic behavior of fluid–rectangular tank–soil/foundation system with a simple and fast seismic analysis procedure. In this procedure, interaction effects are presented by Housner's two mass approximations for fluid and the cone model for soil/foundation system. This approach can determine; displacement at the height of the impulsive mass, the sloshing displacement and base forces for the soil/foundation system conditions including embedment and incompressible soil cases. Models and equations for proposed method were briefly explained for different tank–soil/foundation system combinations. By means of changing soil/foundation conditions, some comparisons are made on base forces and sloshing responses for the cases of embedment and no embedment. The results showed that the displacements and base shear forces generally decreased, with decreasing soil stiffness. However, embedment, wall flexibility, and soil–structure interaction (SSI) did not considerably affect the sloshing displacement.  相似文献   

10.
A study on the dynamic response of a railway track is presented via a 3-D formulation based on the frequency domain Boundary Element Method (BEM) and the Finite Element Method (FEM). The railway track consists of a group of surface, massive, rigid footings resting on a viscoelastic half-space and connected by an overlaying rail structure. The BEM, employing the full-space fundamental solutions and quadrilateral elements, is used for the simulation of the elastic half-space while the FEM is used to model the rigid footings and the rail superstructure. The loading function consists of a set of externally applied, harmonic or transient loads. Frequency as well as transient, by way of FFT, results are presented for various modes of vibration. Various numerical studies assess the through-the-soil interaction of the adjacent footings, the influence of soil damping, the effect of the overlaying structure on the frequency content of the system, and the effective simulation of an infinitely long railway track by a truncated one.  相似文献   

11.
By coupling FEM and BEM, a numerical method was developed for dynamic response analyses of dam–foundation–reservoir systems in the time domain. During formulation, the weighted residual procedure was applied to the coupling of several equations of motion for solid and fluid in the FE and BE regions, and an algorithm similar to the Newmark beta procedure was finally obtained. The algorithm is advantageous in that it takes into account all the effects of dam–foundation, dam–reservoir and reservoir–foundation interactions, as well as of the absorption of both elastodynamic and hydrodynamic waves at the boundaries of the foundation and the reservoir. To demonstrate the validity of the present method, the impulsive response of a dam–foundation–reservoir system was calculated using the algorithm, and showed a good agreement with the existing results obtained by other researchers.  相似文献   

12.
This paper reports on the results of a study conducted on tanks partially filled with water, representing tuned liquid dampers (TLD), subjected to both 1D and 2D horizontal excitations. The sloshing response of the water in the tank is characterized by the free surface motion, the resulting base shear force, and evaluation of the energy dissipated by the sloshing water. A 1D non‐linear flow model capable of simulating a TLD equipped with damping screens is employed to model a 2D TLD. Application of this particular model requires the assumption that the response is decoupled and can be treated as the summation of two independent 1D TLDs. Results from the non‐linear flow model are compared with the 2D experimental shake table test results leading to a validation of the decoupled response assumption. This attractive decoupled response property allows square and rectangular tanks to be used as 2D TLDs, which can simultaneously reduce the dynamic response of a structure in two perpendicular modes of vibration. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Nonlinear behavior of liquid sloshing inside a partially filled rectangular tank is investigated. The nonlinearity in the numerical modeling of the liquid sloshing originates from the nonlinear terms of the governing equations of the fluid flow and the liquid free surface motion as a not known boundary condition. The numerical simulations are performed for both linear and nonlinear conditions. The computed results using linear conditions are compared with readily available exact solution. In order to verify the results of the nonlinear numerical solution, a series of the shaking table tests on rectangular tank were conducted. Having verified linear and nonlinear numerical models, they are used for computation of near wall sloshing height at a series of real scale tanks (with various dimensions) under the both harmonic and earthquake base excitation. Finally, the nonlinear effects on liquid sloshing modeling are discussed and the practical limitations of the linear solution in evaluating the response of seismically excited liquids are also addressed.  相似文献   

14.
渡槽中流体非线性晃动的边界元模拟   总被引:20,自引:0,他引:20  
应用边界元法分析了流体非线性晃动及其对渡槽的作用效应,将所得结果与线性解析结果作了比较.数值计算表明:流体以较大幅度晃动时,线性模型结果与非线性边界元结果有较大偏差,计算有限幅流体晃动反应宜采用非线性模型.  相似文献   

15.
This paper investigates the effects of foundation embedment on the seismic behavior of fluid-elevated tank-foundation–soil system with a structural frame supporting the fluid containing tank. Six different soil types defined in the well-known seismic codes were considered. Both the sloshing effects of the fluid and soil-structure interaction of the elevated tanks located on these six different soils were included in the analyses. Fluid-elevated tank-foundation–soil systems were modeled with the finite element (FE) technique. The fluid-structure interaction was taken into account using Lagrangian fluid FE approximation implemented in the general purpose structural analysis computer program, ANSYS. FE model with viscous boundary was used to include elevated tank-foundation–soil interaction effects. The models were analyzed for the foundations with and without embedment. It was found that the tank roof displacements were affected significantly by the embedment in soft soil, however, this effect was smaller for stiff soil types. Except for soft soil types, embedment did not affect the other response parameters, such as sloshing displacement, of the systems considered in this study.  相似文献   

16.
A common effective method to reduce the seismic response of liquid storage tanks is to isolate them at base using base-isolation systems. It has been observed that in many earthquakes, the foregoing systems significantly affect on the whole system response reduction. However, in exceptional cases of excitation by long-period shaking, the base-isolation systems could have adverse effects. Such earthquakes could cause tank damage due to excessive liquid sloshing. Therefore, the numerical seismic response of liquid storage tanks isolated by bilinear hysteretic bearing elements is investigated under long-period ground motions in this research. For this purpose, finite shell elements for the tank structure and boundary elements for the liquid region are employed. Subsequently, fluid–structure equations of motion are coupled with governing equation of base-isolation system, to represent the whole system behavior. The governing equations of motion of the whole system are solved by an iterative and step-by-step algorithm to evaluate the response of the whole system to the horizontal component of three ground motions. The variations of seismic shear forces, liquid sloshing heights, and tank wall radial displacements are plotted under various system parameters such as the tank geometry aspect ratio (height to radius), and the flexibility of the isolation system, to critically examine the effects of various system parameters on the effectiveness of the base-isolation systems against long-period ground motions. From these analyses, it may be concluded that with the installation of this type of base-isolation system in liquid tanks, the dynamic response of tanks during seismic ground motions can be considerably reduced. Moreover, in the special case of long-period ground motions, the seismic response of base-isolated tanks may be controlled by the isolation system only at particular conditions of slender and broad tanks. For the case of medium tanks, remarkable attentions would be required to be devoted to the design of base-isolation systems expected to experience long-period ground motions.  相似文献   

17.
Some structures may be very massive and may have to be located on relatively soft soil. In such cases, the soil adjacent to the structure behaves in a non-linear fashion and affects the response of the structure to the dynamic loading. An approximate hybrid approach to analyse soil–structure systems accounting for soil non-linearities has been developed in this paper. The approach combines the consistent infinitesimal finite-element cell method (CIFECM) and the finite-element method (FEM). The CIFECM is employed to model the non-linear (near-field) zone of the soil supporting the structure as a series of bounded media. The material properties of the bounded media are selected so that they are compatible with the average effective strains over the whole bounded medium during the excitation. The linear zone of soil away from the foundation, the far-field, is modelled as an unbounded medium using the CIFECM for unbounded media. The structure itself is represented by the FEM. The proposed method is used to model the dynamic response of a one-mass structure and a TV-tower supported on a homogenous stratum and excited by an earthquake. It was found that the secondary soil non-linearity might increase or decrease the base forces of tall slender structures depending on the type of structure, frequency content of the input motion and the dynamic properties of the near-field soil.  相似文献   

18.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
A new numerical procedure is proposed for the analysis of three-dimensional dynamic soil–structure interaction in the time domain. In this study, the soil is modelled as a linear elastic solid, however, the methods developed can be adapted to include the effects of soil non-linearities and hysteretic damping in the soil. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite-element method, is used and the structure is modelled by 8–21 variable-number-node three-dimensional isoparametric or subparametric hexahedral curvilinear elements. Approximations in both time and space, which lead to efficient schemes for calculation of the acceleration unit-impulse response matrix, are proposed for the scaled boundary finite-element method resulting in significant reduction in computational effort with little loss of accuracy. The approximations also lead to a very efficient scheme for evaluation of convolution integrals in the calculation of soil–structure interaction forces. The approximations proposed in this paper are also applicable to the boundary element method. These approximations result in an improvement over current methods. A three-dimensional Dynamic Soil–Structure Interaction Analysis program (DSSIA-3D) is developed, and seismic excitations (S-waves, P-waves, and surface waves) and externally applied transient loadings can be considered in analysis. The computer program developed can be used in the analysis of three-dimensional dynamic soil–structure interaction as well as in the analysis of wave scattering and diffraction by three-dimensional surface irregularities. The scattering and diffraction of seismic waves (P-, S-, and Rayleigh waves) by various three-dimensional surface irregularities are studied in detail, and the numerical results obtained are in good agreement with those given by other authors. Numerical studies show that the new procedure is suitable and very efficient for problems which involve low frequencies of interest for earthquake engineering. Copyright © 1999 John Wiley & Sons Ltd  相似文献   

20.
A study on the dynamic characteristics of rigid foundations with special geometries such as square or circular with concentric internal holes, is presented. The foundations are resting on a homogeneous, linear elastic halfspace and are subjected to external forces or seismic wave excitation. Both ‘relaxed’ and ‘non-relaxed’ boundary conditions at the interface between the foundation and the halfspace are considered, and several parametric studies are conducted to assess the influence of either type of boundary conditions upon each of the possible modes of vibration. Results for massive and massless foundations are presented in time and frequency domains for impulsive and harmonic excitations, respectively. A time domain boundary element method (BEM) developed by the authors for the solution of a class of 3-D soil-structure interaction (SSI) problems is used for all the analyses reported in this work. The accuracy and efficiency of the method and the BEM models developed in this work are assessed on the basis of comparison studies with published results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号