首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

2.
We herein present the CLIMBER-3α Earth System Model of Intermediate Complexity (EMIC), which has evolved from the CLIMBER-2 EMIC. The main difference with respect to CLIMBER-2 is its oceanic component, which has been replaced by a state-of-the-art ocean model, which includes an ocean general circulation model (GCM), a biogeochemistry module, and a state-of-the-art sea-ice model. Thus, CLIMBER-3α includes modules describing the atmosphere, land-surface scheme, terrestrial vegetation, ocean, sea ice, and ocean biogeochemistry. Owing to its relatively simple atmospheric component, it is approximately two orders of magnitude faster than coupled GCMs, allowing the performance of a much larger number of integrations and sensitivity studies as well as longer ones. At the same time its oceanic component confers on it a larger degree of realism compared to those EMICs which include simpler oceanic components. The coupling does not include heat or freshwater flux corrections. The comparison against the climatologies shows that CLIMBER-3α satisfactorily describes the large-scale characteristics of the atmosphere, ocean and sea ice on seasonal timescales. As a result of the tracer advection scheme employed, the ocean component satisfactorily simulates the large-scale oceanic circulation with very little numerical and explicit vertical diffusion. The model is thus suited for the study of the large-scale climate and large-scale ocean dynamics. We herein describe its performance for present-day boundary conditions. In a companion paper (Part II), the sensitivity of the model to variations in the external forcing, as well as the role of certain model parameterisations and internal parameters, will be analysed.  相似文献   

3.
 The stability of the thermohaline circulation is investigated using an ocean general circulation model coupled to a simple atmospheric model. The atmospheric model is so developed that it represents the wind stress and the freshwater flux more realistically than existing energy balance models. The coupled model can reproduce the realistic deep ocean circulation without any flux adjustment. Effects of the wind stress and the vertical diffusion on the thermohaline circulation are studied by conducting various experiments with the coupled model. The Ekman upwelling between 60N and 90N brings up salt to the sea surface, while the compensation flow of the Ekman transport and the wind-driven gyre circulation between 30N and 60N carry salt horizontally to the high latitudes. By carrying out experiments where the wind stress is completely or partly removed, it is demonstrated that either of the vertical or the horizontal salt transport prevents the halocline formation at high latitudes and maintains the thermohaline circulation. For an experiment in which the vertical diffusivity is enhanced at high latitudes, it is shown that the vertical diffusion at high latitudes also prevents the halocline formation and stabilizes the thermohaline circulation. It is also shown that the value of the vertical diffusivity at high latitude affects the existence of the multiple equilibria of the thermohaline circulation. Received: 26 April 2000 / Accepted: 10 January 2001  相似文献   

4.
 A new simple, coupled climate model is presented and used to investigate the sensitivity of the thermohaline circulation and climate to ocean vertical and horizontal exchange. As formulated, the model highlights the role of thin, ocean surface layers in the communication between the atmosphere and the subsurface ocean. Model vertical exchange is considered to be an analogue to small-scale, diapycnal mixing and convection (when present) in the ocean. Model horizontal exchange is considered to be an analogue to the effects of the wind-driven circulation. For small vertical exchange in the ocean, the model exhibits only one steady-state solution: a relatively cold, mid-high-latitude climate associated with a weak, salinity-driven circulation (“off ” mode). For large vertical and horizontal exchange in the ocean, the model also exhibits only one steady-state solution: a relatively warm, mid-high-latitude climate associated with a strong, thermally-driven circulation (“on” mode). For sufficiently weak horizontal exchange but large enough vertical exchange, both modes are possible stable, steady-state solutions. When model parameters are calibrated to fit tracer distributions of the modern ocean-atmosphere system, only the “on” mode is possible in this standard case. This suggests that the wind-driven circulation in consort with diapycnal mixing suppresses the “off ” mode in the modern ocean-atmosphere system. Since both diapycnal mixing and the wind-driven circulation would be expected to increase in a cold climate with greater meridional temperature gradients and enhanced winds, vertical and horizontal exchange in the ocean are probably associated with strong negative feedbacks which tend to stabilize climate. These results point to the need to resolve ocean wind-driven circulation and to greatly improve the treatment of ocean diapycnal mixing in more complete models of the climate system. Received: 16 November 1999 / Accepted: 19 June 2000  相似文献   

5.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

6.
The climate at the Last Interglacial Maximum (125 000 years before present) is investigated with the atmosphere-ocean general circulation model ECHAM-1/LSG and with the climate system model of intermediate complexity CLIMBER-2. Comparison of the results of the two models reveals broad agreement in most large-scale features, but also some discrepancies. The fast turnaround time of CLIMBER-2 permits one to perform a number of sensitivity experiments to (1) investigate the possible reasons for these differences, in particular the impact of different freshwater fluxes to the ocean, (2) analyze the sensitivity of the results to changes in the definition of the modern reference run concerning CO2 levels (preindustrial versus “present”), and (3) estimate the role of vegetation in the changed climate. Interactive vegetation turns out to be capable of modifying the initial climate signals significantly, leading especially to warmer winters in large parts of the Northern Hemisphere, as indicated by various paleodata. Differences due to changes in the atmospheric CO2 content and due to interactive vegetation are shown to be at least of the same order of magnitude as differences between the two completely different models, demonstrating the importance of careful experimental design.  相似文献   

7.
 We present a method for constraining key properties of the climate system that are important for climate prediction (climate sensitivity and rate of heat penetration into the deep ocean) by comparing a model's response to known forcings over the twentieth century against climate observations for that period. We use the MIT 2D climate model in conjunction with results from the Hadley Centre's coupled atmosphere–ocean general circulation model (AOGCM) to determine these constraints. The MIT 2D model, which is a zonally averaged version of a 3D GCM, can accurately reproduce the global-mean transient response of coupled AOGCMs through appropriate choices of the climate sensitivity and the effective rate of diffusion of heat anomalies into the deep ocean. Vertical patterns of zonal mean temperature change through the troposphere and lower stratosphere also compare favorably with those generated by 3-D GCMs. We compare the height–latitude pattern of temperature changes as simulated by the MIT 2D model with observed changes, using optimal fingerprint detection statistics. Using a linear regression model as in Allen and Tett this approach yields an objective measure of model-observation goodness-of-fit (via the residual sum of squares weighted by differences expected due to internal variability). The MIT model permits one to systematically vary the model's climate sensitivity (by varying the strength of the cloud feedback) and rate of mixing of heat into the deep ocean and determine how the goodness-of-fit with observations depends on these factors. This provides an efficient framework for interpreting detection and attribution results in physical terms. With aerosol forcing set in the middle of the IPCC range, two sets of model parameters are rejected as being implausible when the model response is compared with observations. The first set corresponds to high climate sensitivity and slow heat uptake by the deep ocean. The second set corresponds to low sensitivities for all magnitudes of heat uptake. These results demonstrate that fingerprint patterns must be carefully chosen, if their detection is to reduce the uncertainty of physically important model parameters which affect projections of climate change. Received: 19 April 2000 / Accepted: 13 April 2001  相似文献   

8.
 We compared regional biases and transient doubled CO2 sensitivities of nine coupled atmosphere-ocean general circulation models (GCMs) from six international climate modeling groups. We evaluated biases and responses in winter and summer surface air temperatures and precipitation for seven subcontinental regions, including those in the 1990 Intergovernmental Panel on Climate Change (IPCC) Scientific Assessment. Regional biases were large and exceeded the variance among four climatological datasets, indicating that model biases were not primarily due to uncertainty in observations. Model responses to altered greenhouse forcing were substantial (average temperature change=2.7±0.9 °C, range of precipitation change =−35 to +120% of control). While coupled models include more climate system feedbacks than earlier GCMs implemented with mixed-layer ocean models, inclusion of a dynamic ocean alone did not improve simulation of long-term mean climatology nor increase convergence among model responses to altered greenhouse gas forcing. On the other hand, features of some of the coupled models including flux adjustment (which may have simply masked simulation errors), high horizontal resolution, and estimation of screen height temperature contributed to improved simulation of long-term surface climate. The large range of model responses was partly accounted for by inconsistencies in forcing scenarios and transient-simulation averaging periods. Nonetheless, the models generally had greater agreement in their sensitivities than their controls did with observations. This suggests that consistent, large-scale response features from an ensemble of model sensitivity experiments may not depend on details of their representation of present-day climate. Received: 9 September 1996 / Revised: 31 July 1997  相似文献   

9.
H. Renssen 《Climate Dynamics》1997,13(7-8):587-599
 Geological evidence points to a global Younger Dryas (YD) climatic oscillation during the last glacial/ present interglacial transition phase. A convincing mechanism to explain this global YD climatic oscillation is not yet available. Nevertheless, a profound understanding of the mechanism behind the YD climate would lead to a better understanding of climate variability. Therefore, the Hamburg atmospheric circulation model was used to perform four numerical experiments on the YD climate. The objective of this study is to improve the understanding of different forcings influencing climate during the last glacial/interglacial transition and to investigate to what extent the model response agrees with global geological evidence of YD climate change. The following boundary conditions were altered: sea surface conditions, ice sheets, insolation and atmospheric CO2 concentration. Sea surface temperatures based on foraminiferal assemblages proved to produce insufficient winter cooling in the N Atlantic Ocean in two experiments. It is proposed that this discrepancy is caused by uncertainties in the reconstruction method of sea surface temperatures. Therefore, a model-derived set of Atlantic surface ocean conditions was prescribed in a subsequent simulation. However, the latter set represented an Atlantic Ocean without a thermohaline circulation, which is not in agreement with evidence from ocean cores. The global response to the boundary conditions was analysed using three variables, namely surface temperature, zonal wind speed and precipitation. The statistical significance of the changes was tested with a two-tailed t-test. Moreover, the significant responses to cooled oceans were compared with geological evidence of a YD oscillation. This comparison revealed a good match in Europe, Greenland, Atlantic Canada and the N Pacific region, explaining the YD oscillation in these regions as a response to cooled N Atlantic and N Pacific Oceans. However, the results leave the YD climate in other regions completely unexplained. This reflects either an insufficient set of boundary conditions or the important role played by feedbacks within the coupled atmosphere-ocean-ice system. These feedbacks are poorly represented in the used atmospheric model, since ice sheets and the ocean surface conditions have to be prescribed. Received: 30 July 1996 / Accepted: 12 February 1997  相似文献   

10.
Long (130,000 years) transient simulations with a coupled model of intermediate complexity (CLIMBER-2) have been performed. The main objective of this study is to examine leads and lags in the response to the climate system to separate obliquity and precession-induced insolation changes. Focus is on the role of internal feedbacks in the coupled atmosphere/ocean/sea-ice/vegetation system. No interactive ice sheets were used. The results show that leads and lags occur in response to the African/Asian monsoon, temperatures at high latitudes and the Atlantic thermohaline circulation. For the monsoon, leads and lags of the monthly precipitation with respect to the precession parameter were found, which are strongly modified by vegetation. In contrast, no lag was observed for the annual precipitation. At high latitudes during late winter/early spring a vegetation-induced lag with respect to the precession parameter was found in surface air temperatures. Again, no annual lag was detected. The lag in the monthly surface air temperatures induces a lag in the annual overturning in the Atlantic Ocean by changing the strength of the deep convection. The lag is several thousand years. The obliquity-related forcing does not give rise to lags in the climate system. We conclude that lags in monthly climatic variables, which are due to vegetation feedbacks, can result in an annual lag when a climatic process (like deep water formation) acts as a filter for certain months.  相似文献   

11.
12.
A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic.  相似文献   

13.
A simple coupled ocean, atmosphere and sea-ice model is presented. The idealised model consists of a zonally averaged land and ocean strip of constant angular width extending from pole to pole. The meridional energy transport in the ocean is modelled by contributions from the large scale thermohaline overturning cells and from horizontal diffusive fluxes. The atmospheric meridional energy transports are parametrised as diffusive fluxes in addition to advective transports in the Hadley domain. This parametrisation resolves the equatorward moisture transport as well as the poleward transport of potential energy in the upper branch of the Hadley circulation. The model reproduces the annual averaged meridional energy transports in the climate system with a small number of free model parameters. The basic feedbacks between the three climatic components are studied by investigating the model's sensitivity towards reductions in the solar insolation. It is found that the meridional energy transport in the ocean does not amplify the ice albedo feedback. This has important implications for modelling the climate sensitivity in atmosphere-only models, as these would exaggerate the sensitivity to changes in the solar insolation if their parametrisations of the meridional energy transport are constrained by surface temperatures. The role of the dependence of the atmospheric transports on the meridional temperature gradient is shown to have a significant influence on the sensitivity on the coupled model, and the inclusion of seasonal cycles greatly increase the models sensitivity. The Hadley circulation does significantly alter the strength of the ice-albedo feedback in the coupled model. The idealised configuration of the model makes it a useful tool for studying the feedbacks in the ocean-atmosphere-sea ice system in the context of the "Snowball Earth" hypothesis.  相似文献   

14.
A hybrid coupled model(HCM) is constructed for El Nino–Southern Oscillation(ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating(OBH), and tropical instability waves(TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.  相似文献   

15.
A temperate and boreal deforestation experiment has been performed at Météo-France using the ARPEGE climate model. A first simulation was performed as a control with a present-day vegetation map, and another one with all forests north of 45 °N replaced by meadows. Prescribed monthly mean climatological SSTs were used in both integrations. The ARPEGE climate model includes a physically based land surface scheme, which has been tested both on snowfree and snow-covered sites, and has a relatively high horizontal resolution. Results of the 4-year integrations suggest that forests exert a strong influence on the surface climate of the temperate and boreal regions. Deforestation induces a significant cooling which modifies the atmospheric circulation simulated in the high latitudes, and also in the tropics. The most important impact is observed during the melting season which is delayed by the forest removal. This result is consistent with preliminary stand-alone experiments showing that the atmospheric boundary layer can be heated by the forest, even if the ground is covered by snow. The study confirms that vegetation feedbacks should be included when performing future climate studies such as doubled CO2 experiments, eventhough many uncertainties still remain with regard to other physical aspects of the climate models. Received: 5 September 1995 / Accepted: 12 August 1996  相似文献   

16.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

17.
 To understand the influence of the Bering Strait on the World Ocean’s circulation, a model sensitivity analysis is conducted. The numerical experiments are carried out with a global, coupled ice–ocean model. The water transport through the Bering Strait is parametrized according to the geostrophic control theory. The model is driven by surface fluxes derived from bulk formulae assuming a prescribed atmospheric seasonal cycle. In addition, a weak restoring to observed surface salinities is applied to compensate for the global imbalance of the imposed surface freshwater fluxes. The freshwater flux from the North Pacific to the North Atlantic associated with the Bering Strait throughflow seems to be an important element in the freshwater budget of the Greenland and Norwegian seas and of the Atlantic. This flux induces a freshening of the North Atlantic surface waters, which reduces the convective activity and leads to a noticeable (6%) weakening of the thermohaline conveyor belt. It is argued that the contrasting results obtained by Reason and Power are due to the type of surface boundary conditions they used. Received: 27 October 1995/Accepted: 20 November 1996  相似文献   

18.
The influence of chlorophyll spatial patterns and variability on the tropical Pacific climate is investigated by using a fully coupled general circulation model (HadOPA) coupled to a state-of-the-art biogeochemical model (PISCES). The simulated chlorophyll concentrations can feedback onto the ocean by modifying the vertical distribution of radiant heating. This fully interactive biological-ocean-atmosphere experiment is compared to a reference experiment that uses a constant chlorophyll concentration (0.06 mg m−3). It is shown that introducing an interactive biology acts to warm the surface eastern equatorial Pacific by about 0.5°C. Two competing processes are involved in generating this warming: (a) a direct 1-D biological warming process in the top layers (0–30 m) resulting from strong chlorophyll concentrations in the upwelling region and enhanced by positive dynamical feedbacks (weaker trade winds, surface currents and upwelling) and (b) a 2-D meridional cooling process which brings cold off-equatorial anomalies from the subsurface into the equatorial mixed layer through the meridional cells. Sensitivity experiments show that the climatological horizontal structure of the chlorophyll field in the upper layers is crucial to maintain the eastern Pacific warming. Concerning the variability, introducing an interactive biology slightly reduces the strength of the seasonal cycle, with stronger SST warming and chlorophyll concentrations during the upwelling season. In addition, ENSO amplitude is slightly increased. Similar experiments performed with another coupled general circulation model (IPSL-CM4) exhibit the same behaviour as in HadOPA, hence showing the robustness of the results.  相似文献   

19.
Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.  相似文献   

20.
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean–atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10–20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean’s thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号