首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
--Extensive hydrogeological, geochemical, radiometric and hydro-isotope investigations in the Vogtland region, Germany, since 1989 suggest a fluid connection between a special epicentral area (focal depth: 3-15 km; ML < 5) and a mineral spring at Bad Brambach. Twenty-six hydrogeochemical anomalies are related to earthquakes/swarmquakes of that epicentral area near Novy Kostel (CZ) during the last 9 years. The anomalies were originated by a slug-flow process in the fluid-filled fracture system near the surface. The gas component of the observed fluid (99 vol. % CO2) is of upper mantle/crustal origin. The fluid transport pathway to the surface is the seismically active Mariánské Lázné fault zone. The interpretation suggests an influence of the fluid system due to earthquake preparation processes.  相似文献   

2.
The area south and east of the Baltic Sea has very minor seismic activity. However, occasional events occur as illustrated by four events in recent years, which are analysed in this study: near Wittenburg, Germany, on May 19, 2000, M w = 3.1, near Rostock, Germany, on July 21, 2001, M w = 3.4 and in the Kaliningrad area, Russia, two events on September 21, 2004 with M w = 4.6 and 4.7. Locations, magnitudes (M L and M w) and focal mechanisms were determined for the two events in Germany. Synthetic modeling resulted in a well-confined focal depth for the Kaliningrad events. The inversion of macroseismic observations provided simultaneous solutions of the location, focal depth and epicentral intensity. The maximum horizontal compressive stress orientations obtained from focal mechanism solutions, approximately N–S for the two German events and NNW–SSE for the Kaliningrad events, show a good agreement with the regionally oriented crustal stress field.  相似文献   

3.
-- The study addresses the evaluation of earthquake hazard parameters such as maximum regional magnitude (Mmax) and the slope of Gutenberg-Richter law # (where b=# log e) for the Hellenic Wadati-Benioff zone and the overriding lithospheric plate in the area of Crete and its surroundings. The seismicity of the area is divided in a cellular (1.0° 2 1.0°) manner allowing analysis of the localized earthquake hazard parameters and graphical representation of their spatial variation. Our approach incorporates the recently updated earthquake catalogue for Greece and the adjacent areas, the consideration of the morphology of the deep seismically active structures in the studied area and use of a probabilistic procedure for estimating the earthquake hazard parameters.¶One of the main inconsistencies in the earthquake hazard assessment is the estimation of the maximum magnitude and the related uncertaint y. The Bayesian approach, applied in the present, is a straightforward technique for evaluating the earthquake hazard parameters and is based on the following assumptions: Poissonian character of seismic events flow, a frequency-magnitude law of Gutenberg-Richter's type with cutoff maximal value for estimated parameter and a seismic catalogue, having a rather sizeable number of events (i.e., 50 events at least per cell). For five cells in which the number of events is less than 50, an effort is made to produce synthetic data. The re-assessed parameters obtained from the synthetic data show no significant difference and the real data (of the five cells) are finally taken into account although the estimated uncertainty is high.¶For four random cells we constructed hazard curves showing the probabilities that a certain magnitude M will be exceeded in one year and the return periods (in years) that are expected for a given magnitude. These are particularly useful for the mapping of earthquake hazard in regions of either low or high seismic activity, as is Crete and the adjacent area.¶The obtained results show that the W and E parts of both subducting and overriding plates differ in the spatial distribution of all the estimated earthquake hazard parameters. The Mmax distribution indicates strong coupling between the western portions of the interacting plates (Mmax > 6.3) to the south of 36°N. The smaller values of Mmax (Mmax < 6.3) estimated in the SE part of the studied area indicate weak coupling between the eastern portions of the subducting and overriding plates.¶Values of b > 1.0 are found to the south and east of Crete for the Wadati-Benioff zone, and over the central part of the island and the area to the northeast of it (cell 11) for the continental wedge, which suggests nonuniform stress field and/or heterogeneous material.  相似文献   

4.
Improving Regional Seismic Event Location in China   总被引:1,自引:0,他引:1  
—?In an effort to improve our ability to locate seismic events in China using only regional data, we have developed empirical propagation path corrections and applied such corrections using traditional location routines. Thus far, we have concentrated on corrections to observed P arrival times for crustal events using travel-time observations available from the USGS Earthquake Data Reports, the International Seismic Centre Bulletin, the preliminary International Data Center Reviewed Event Bulletin, and our own travel-time picks from regional data. Location ground truth for events used in this study ranges from 25?km for well-located teleseimic events, down to 2?km for nuclear explosions located using satellite imagery. We also use eight events for which depth is constrained using several waveform methods. We relocate events using the EvLoc algorithm from a region encompassing much of China (latitude 20°–55°N; longitude 65°–115°E). We observe that travel-time residuals exhibit a distance-dependent bias using IASPEI91 as our base model. To remedy this bias, we have developed a new 1-D model for China, which removes a significant portion of the distance bias. For individual stations having sufficient P-wave residual data, we produce a map of the regional travel-time residuals from all well-located teleseismic events. Residuals are used only if they are smaller than 10?s in absolute value and if the seismic event is located with accuracy better than 25?km. From the residual data, correction surfaces are constructed using modified Bayesian kriging. Modified Bayesian kriging offers us the advantage of providing well-behaved interpolants and their errors, but requires that we have adequate error estimates associated with the travel-time residuals from which they are constructed. For our P-wave residual error estimate, we use the sum of measurement and modeling errors, where measurement error is based on signal-to-noise ratios when available, and on the published catalog estimate otherwise. Our modeling error originates from the variance of travel-time residuals for our 1-D China model. We calculate propagation path correction surfaces for 74 stations in and around China, including six stations from the International Monitoring System. The statistical significance of each correction surface is evaluated using a cross-validation technique. We show relocation results for nuclear tests from the Balapan and Lop Nor test sites, and for earthquakes located using interferometric synthetic aperture radar. These examples show that the use of propagation path correction surfaces in regional relocations eliminates distance bias in the residual curves and significantly improves the accuracy and precision of seismic event locations.  相似文献   

5.
v--v Continuous seismic threshold monitoring is a technique that has been developed over the past several years to assess the upper magnitude limit of possible seismic events that might have occurred in a geographical target area. The method provides continuous time monitoring at a given confidence level, and can be applied in a site-specific, regional or global context.¶In this paper (Part 1) and a companion paper (Part 2) we address the problem of optimizing the site-specific approach in order to achieve the highest possible automatic monitoring capability of particularly interesting areas. The present paper addresses the application of the method to cases where a regional monitoring network is available. We have in particular analyzed events from the region around the Novaya Zemlya nuclear test site to develop a set of optimized processing parameters for the arrays SPITS, ARCES, FINES, and NORES. From analysis of the calibration events we have derived values for beam-forming steering delays, filter bands, short-term average (STA) lengths, phase travel times (P and S waves), and amplitude-magnitude relationships for each array. By using these parameters for threshold monitoring of the Novaya Zemlya testing area, we obtain a monitoring capability varying between mb 2.0 and 2.5 during normal noise conditions.¶The advantage of using a network, rather than a single station or array, for monitoring purposes becomes particularly evident during intervals with high global seismic activity (aftershock sequences), high seismic noise levels (wind, water waves, ice cracks) or station outages. For the time period November-December 1997, all time intervals with network magnitude thresholds exceeding mb 2.5 were visually analyzed, and we found that all of these threshold peaks could be explained by teleseismic, regional, or local signals from events outside the Novaya Zemlya testing area. We could therefore conclude within the confidence level provided by the method, that no seismic event of magnitude exceeding 2.5 occurred at the Novaya Zemlya test site during this two-month time interval.¶As an example of particular interest in a monitoring context, we apply optimized threshold processing of the SPITS array for a time interval around 16 August 1997 mb 3.5 event in the Kara Sea. We show that this processing enables us to detect a second, smaller event from the same site (mb 2.6), occurring about 4 hours later. This second event was not defined automatically by standard processing.  相似文献   

6.
—?An important requirement for a comprehensive seismic monitoring system is the capability to accurately locate small seismic events worldwide. Accurate event location can improve the probability of determining whether or not a small event, recorded predominantly by local and regional stations, is a nuclear explosion. For those portions of the earth where crustal velocities are not well established, reference event calibration techniques offer a method of increased locational accuracy and reduced locational bias.¶In this study, data from a set of mining events with good ground-truth data in the Powder River Basin region of eastern Wyoming are used to investigate the potential of event calibration techniques in the area. Results of this study are compared with locations published in the prototype International Data Center's Reviewed Event Bulletin (REB). A Joint Hypocenter Determination (JHD) method was applied to a s et of 23 events. Four of those events with superior ground-truth control (mining company report or Global Positioning System data) were used as JHD reference events. Nineteen (83%) of the solutions converged and the resulting set of station-phase travel-time corrections from the JHD results was then tested. When those travel-time corrections were applied individually to the four events with good ground-truth control, the average locational error reduced the original REB location error from 16.1?km to 5.7?km (65% improvement). The JHD locations indicated reduced locational bias and all of the individual error ellipses enclosed the actual known event locations.¶Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Associ ation of Seismology and the Physics of the Earth's Interior (IASPEI) travel-time tables, coupled with JHD-derived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.  相似文献   

7.
Application of Regional Phase Amplitude Tomography to Seismic Verification   总被引:1,自引:0,他引:1  
v--vWe have applied tomographic techniques to amplitude data to quantify regional phase path effects for use in source discrimination studies. Tomography complements interpolation (kriging) methods by extending our ability to apply path corrections into regions devoid of calibration events, as well as raising levels of confidence in the corrections because of their more physical basis. Our tomography technique solves for resolvable combinations of attenuation, source-generation, site and spreading terms. First difference regularization is used to remove singularities and reduce noise effects.¶In initial tests the technique was applied to a data set of 1488, 1.0 Hz, Pg/Lg amplitude ratios from 13 stations for paths inside a 30° by 40° box covering western China and surrounding regions. Tomography reduced variance 60%, relative to the power-law distance correction traditionally applied to amplitude ratios. Relative Pg/Lg attenuation varied with geologic region, with low values in Tibet, intermediate values in basins and high values for platforms and older crust. Spatial patterns were consistent with previous path effect studies in Asia, especially local earthquake coda-Q. Relative spreading was consistent with expected values for Pg and Lg. Relative site terms were similar to one another, yet some tradeoff with attenuation was evident.¶Tomography residuals followed systematic trends with distance, which may result from the evolution from direct to coda phases, focusing, model tradeoff or data windowing effects. Examination of the residuals using a kriging interpolator showed coherent geographical variations, indicating unmodeled path effects. The residual patterns often follow geological boundaries, which could result from attenuating zones or minor blockages that are too thin to be resolved, or that have anisotropic effect on regional phases. These results will guide efforts to reparameterize tomography models to more effectively represent regional wave attenuation and blockage. The interpolated residuals also can be combined with predictions of the tomographic model to account for path effects in discrimination studies on a station by station basis.  相似文献   

8.
Summary About 360 seismic events from almost all directions recorded at 13 seismological observatories in Sweden and Finland have been investigated. The depths of these events vary from the surface to 650 km and the epicentral distances from 9° to 119° with fairly even coverage. The two most separated stations in this array are about 15° apart (Karlskrona in Sweden and Kevo in Finland). Comparison of observed travel-time curves and their slope with those ofJeffreys-Bullen andHerrin are made. Generally, the observed travel times are earlier than theJeffreys-Bullen times and later than theHerrin ones. Path and depth effects on residuals with respect to the two given tables are studied, and station corrections and source corrections are estimated. Global and regional travel-time tables of theP-wave have been constructed for this network of stations.On leave from Geophysical Institute, Tehran University, Tehran, Iran  相似文献   

9.
—?Seismic event locations based on regional 1-D velocity-depth sections can have bias errors caused by travel-time variations within different tectonic provinces and due to ray-paths crossing boundaries between tectonic provinces with different crustal and upper mantle velocity structures. Seismic event locations based on 3-D velocity models have the potential to overcome these limitations. This paper summarizes preliminary results for calibration of IMS for North America using 3-D velocity model. A 3-D modeling software was used to compute Source-Station Specific Corrections (SSSCs(3-D)) for Pn travel times utilizing 3-D crustal and upper mantle velocity model for the region. This research was performed within the framework of the United States/Russian Federation Joint Program of Seismic Calibration of the International Monitoring System (IMS) in Northern Eurasia and North America.¶An initial 3-D velocity model for North America was derived by combining and interpolating 1-D velocity-depth sections for different tectonic units. In areas where no information on 1-D velocity-depth sections was available, tectonic regionalization was used to extrapolate or interpolate. A Moho depth map was integrated. This approach combines the information obtained from refraction profiles with information derived from local and regional network data. The initial 3-D velocity model was tested against maps of Pn travel-time residuals for eight calibration explosions; corrections to the 3-D model were made to fit the observed residuals. Our goal was to find a 3-D crustal and upper mantle velocity model capable predicting Pn travel times with an accuracy of 1.0–1.5 seconds (r.m.s.).¶The 3-D velocity model for North America that gave the best fit to the observed travel times, was used to produce maps of SSSCs(3-D) for seismic stations. The computed SSSCs(3-D) vary approximately from +5 seconds to ?5 seconds for the western USA and the Pre-Cambrian platform, respectively. These SSSCs(3-D) along with estimated modeling and measurement errors were used to relocate, using regional data, an independent set of large chemical explosions (with known locations and origin times) detonated within various tectonic provinces of North America. Utilization of the 3-D velocity model through application of the computed SSSCs(3-D) resulted in a substantial improvement in seismic event location accuracy and in a significant decrease of error ellipse area for all events analyzed in comparison both with locations based on the IASPEI91 travel times and locations based on 1-D regional velocity models.  相似文献   

10.
--We have examined the digital waveform data and relocated a number of events within the June 1987 earthquake swarm, which occurred beneath the northern part of Lake Aswan, 70 km southwest of the Aswan High Dam in Egypt. This swarm occurred between June 17th and 19th with a maximum magnitude event of "ML"=3.5.¶Cross correlation between a chosen master and the analyzed events has been carried out on seismograms from stations of the Aswan network. The cross correlation demonstrates the presence of a difference in both the P wave ((tp) and the S wave ((ts) arrival times at each station in the network relative to the arrival times of the master event at the same stations. (tp ranges between т.15 and 0.11 second, while (ts ranges between т.17 and 0.11 second.¶The primary interpretation is that the se time differences represent an error in the manually picking arrival times. Then, (tp and (ts values for each event result from a change in the hypocentral parameters from those of the master event, assuming the P- and S-wave velocity distribution remains constant during the swarm activity. This interpretation enables us to determine the relative distribution of hypocenters with respect to the hypocentral location of the master event. We present the results from a swarm of 9 events demonstrating they originate from a nearly unique location, rather than the zone identified from the preliminary locations which used manually picked onset times.  相似文献   

11.
In regions that undergo low deformation rates, as is the case for metropolitan France (i.e. the part of France in Europe), the use of historical seismicity, in addition to instrumental data, is necessary when dealing with seismic hazard assessment. This paper presents the strategy adopted to develop a parametric earthquake catalogue using moment magnitude Mw, as the reference magnitude scale to cover both instrumental and historical periods for metropolitan France. Work performed within the framework of the SiHex (SIsmicité de l’HEXagone) (Cara et al. Bull Soc Géol Fr 186:3–19, 2015. doi: 10.2113/qssqfbull.186.1.3) and SIGMA (SeIsmic Ground Motion Assessment; EDF-CEA-AREVA-ENEL) projects, respectively on instrumental and historical earthquakes, have been combined to produce the French seismic CATalogue, version 2017 (FCAT-17). The SiHex catalogue is composed of ~40,000 natural earthquakes, for which the hypocentral location and Mw magnitude are given. In the frame of the SIGMA research program, an integrated study has been realized on historical seismicity from intensity prediction equations (IPE) calibration in Mw detailed in Baumont et al. (submitted) companion paper to their application to earthquakes of the SISFRANCE macroseismic database (BRGM, EDF, IRSN), through a dedicated strategy developed by Traversa et al. (Bull Earthq Eng, 2017. doi: 10.1007/s10518-017-0178-7) companion paper, to compute their Mw magnitude and depth. Macroseismic data and epicentral location and intensity used both in IPE calibration and inversion process, are those of SISFRANCE without any revision. The inversion process allows the main macroseismic field specificities reported by SISFRANCE to be taken into account with an exploration tree approach. It also allows capturing the epistemic uncertainties associated with macroseismic data and to IPEs selection. For events that exhibit a poorly constrained macroseismic field (mainly old, cross border or off-shore earthquakes), joint inversion of Mw and depth is not possible, and depth needs to be fixed to calculate Mw. Regional a priori depths have been defined for this purpose based on analysis of earthquakes with a well constrained macroseismic field where joint inversion of Mw and depth is possible. As a result, 27% of SISFRANCE earthquake seismological parameters have been jointly inverted and for the other 73% Mw has been calculated assuming a priori depths. The FCAT-17 catalogue is composed of the SIGMA historical parametric catalogue (magnitude range between 3.5 up to 7.0), covering from AD463 to 1965, and of the SiHex instrumental one, extending from 1965 to 2009. Historical part of the catalogue results from an automatic inversion of SISFRANCE data. A quality index is estimated for each historical earthquake according to the way the events are processed. All magnitudes are given in Mw which makes this catalogue directly usable as an input for probabilistic or deterministic seismic hazard studies. Uncertainties on magnitudes and depths are provided for historical earthquakes following calculation scheme presented in Traversa et al. (2017). Uncertainties on magnitudes for instrumental events are from Cara et al. (J Seismol 21:551–565, 2017. doi: 10.1007/s10950-016-9617-1).  相似文献   

12.
—?Joint Research Program of Seismic Calibration of the International Monitoring System (IMS) in Northern Eurasia and North America has been signed by the Nuclear Treaty Programs Office (NTPO), Department of Defense USA, and the Special Monitoring Service (SMS) of the Ministry of Defense, Russian Federation (RF). Under the Program historical data from nuclear and large chemical explosions of known location and shot time, together with appropriate geological and geophysical data, has been used to derive regional Pn/P travel-time tables for seismic event location within the lower 48 States of the USA and the European part of the RF. These travel-time tables are up to 5?seconds faster in shields than the IASPEI91 tables, and up to 5?seconds slower in the Western USA. Relocation experiments using the regional Pn travel-time curves and surrogate networks for the IMS network generally improved locations for regional seismic events. The distance between true and estimated location (mislocation) was decreased from an average of 18.8?km for the IASPEI91 tables to 10.1?km for the regional Pn travel-time tables. However, the regional travel-time table approach has limitations caused by travel-time variations inside major tectonic provinces and paths crossing several tectonic provinces with substantially different crustal and upper mantle velocity structure.¶The RF members of the Calibration Working Group (WG): Colonel Vyacheslav Gordon (chairman); Dr. Prof. Marat Mamsurov, and Dr. Nikolai Vasiliev. The US members of the WG: Dr. Anton Dainty (chairman), Dr. Douglas Baumgardt, Mr. John Murphy, Dr. Robert North, and Dr. Vladislav Ryaboy.  相似文献   

13.
v--vThis second paper (Part 2) pertaining to optimized site-specific threshold monitoring addresses the application of the method to regions covered by a teleseismic or a combined regional-teleseismic network. In the first paper (Part 1) we developed the method for the general case, and demonstrated its application to an area well-covered by a regional network (the Novaya Zemlya nuclear test site). In the present paper, we apply the method to the Indian and Pakistani nuclear test sites, and show results during the periods of nuclear testing by these two countries in May 1998. Since the coverage by regional stations in these areas is poor, an optimized approach requires the use of selected, high-quality stations at teleseismic distances.¶To optimize the threshold monitoring of these test sites, we use as calibration events either one of the nuclear explosions or a nearby earthquake. From analysis of the calibration events we derive values for array beamforming steering delays, filter bands, short-term averages (STA) lengths, phase travel times (P waves), and amplitude-magnitude relationships for each station. By applying these parameters, we obtain a monitoring capability of both test sites ranging from mb 2.8-3.0 using teleseismic stations only. When including the nearby Nilore station to monitor the Indian tests, we show that the threshold can be reduced by about 0.4 magnitude units. In particular, we demonstrate that the Indian tests on 13 May, 1998, which were not detected by any known seismic station, must have corresponded to a magnitude (mb) of less than 2.4.¶We also discuss the effect of a nearby aftershock sequence on the monitoring capability for the Pakistani test sites. Such an aftershock sequence occurred in fact on the day of the last Pakistani test (30 May, 1998), following a large (mb 5.5) earthquake in Afghanistan located about 1100 km from the test site. We show that the threshold monitoring technique has sufficient resolution to suppress the signals from these interfering aftershocks without significantly affecting the true peak of the nuclear explosion on the threshold trace.  相似文献   

14.
-- A new technique for the parallel computing of 3-D seismic wave propagation simulation is developed by hybridizing the Fourier pseudospectral method (PSM) and the finite-difference method (FDM). This PSM/FDM hybrid offers a good speed-up rate using a large number of processors. To show the feasibility of the hybrid, a numerical 3-D simulation of strong ground motion was conducted for the 1999 Chi-Chi, Taiwan earthquake (Mw 7.6). Comparisons between the simulation results and observed waveforms from a dense strong ground motion network in Taiwan clearly demonstrate that the variation of the subsurface structure and the complex fault slip distribution greatly affect the damage during the Chi-Chi earthquake. The directivity effect of the fault rupture produced large S-wave pulses along the direction of the rupture propagation. Slips in the shallow part of the fault generate significant surface waves in Coastal Plain along the western coast. A large velocity gradient in the upper crust can propagate seismic waves to longer distances with minimum attenuation. The S waves and surface waves were finally amplified further by the site effect of low-velocity sediments in basins, and caused the significant disasters.  相似文献   

15.
We investigate the seismic properties of modern crustal seismicity in the northwestern Sierras Pampeanas of the Andean retroarc region of Argentina. We modelled the complete regional seismic broadband waveforms of two crustal earthquakes that occurred in the Sierra de Velasco on 28 May 2002 and in the Sierra de Ambato on 7 September 2004. For each earthquake we obtained the seismic moment tensor inversion (SMTI) and tested for its focal depth. Our results indicate mainly thrust focal mechanism solutions of magnitudes Mw 5.8 and 6.2 and focal depths of 10 and 8 km, respectively. These results represent the larger seismicity and shallower focal depths in the last 100 years in this region. The SMTI 2002 and 2004 solutions are consistent with previous determinations for crustal seismicity in this region that also used seismic waveform modelling. Taken together, the results for crustal seismicity of magnitudes ≥5.0 in the last 30 years are consistent with an average P-axis horizontally oriented by an azimuth of 125° and T-axis orientation of azimuth 241° and plunge 58°. This modern crustal seismicity and the historical earthquakes are associated with two active reverse faulting systems of opposite vergences bounding the eastern margin of the Sierra de Velasco in the south and the southwestern margin of the Sierra de Ambato in the north. Strain recorded by focal mechanisms of the larger seismicity is very consistent over this region and is in good agreement with neotectonic activity during the last 11,000 years by Costa (2008) and Casa et al. (in press); this shows that the dominant deformation in this part of the Sierras Pampeanas is mainly controlled by contraction. Seismic deformation related to propagation of thrusts and long-lived shear zones of this area permit to disregard previous proposals, which suggested an extensional or sinistral regime for the geomorphic evolution since Pleistocene.  相似文献   

16.
-- The main active faults of the Granada Basin are located in its central-eastern sector, where the most important tectonic activity is concentrated, uplifting its eastern part and sinking the western border. Several parameters related to the seismic potentiality of these active, or in some cases probably active, faults in this basin are used for the first time. Many of these faults can generate earthquakes with magnitudes larger than 6.0 MW, although this is not the general case. The fault situated to the N of Sierra Tejeda, probably the one responsible for the big earthquake of 25/12/1884, stands out, because it could generate an earthquake with magnitude 6.9 MW. Although at present all the data needed are not fully known, we consider that the final results show, as a whole, the average expected return periods of the faults in the Granada Basin.  相似文献   

17.
Many catalogues, agency reports and research articles have been published on seismicity of Turkey and its surrounding since 1950s. Given existing magnitude heterogeneity, erroneous information on epicentral location, event date and time, this past published data however is far from fulfilling the required standards. Paucity of a standardized format in the available catalogues have reinforced the need for a refined and updated catalogue for earthquake related hazard and risk studies. During this study, ~37,000 earthquakes and related parametric data were evaluated by utilizing more than 41 published studies and, an integrated database was prepared in order to analyse all parameters acquired from the catalogues and references for each event. Within the scope of this study, the epicentral locations of M ≥ 5.0 events were firstly reappraised based on the updated Active Fault Map of Turkey. An improved catalogue of 12.674 events for the period 1900–2012 was as a result recompiled for the region between 32–45N° and 23–48E° by analyzing in detail accuracy of all seismological parameters available for each event. The events consist of M ≥ 4.0 are reported in several magnitude scales (e.g. moment magnitude, Mw; surface wave magnitude, MS; body-wave magnitude mb; local magnitude ML and duration magnitude Md) whereas the maximum focal depth reaches up to 225-km. In order to provide homogenous data, the improved catalogue is unified in terms of Mw. Fore-and aftershocks were also removed from the catalogue and completeness analyses were performed both separately for various tectonic sources and as a whole for the study region of interest. Thus, the prepared homogenous and declustered catalogue consisting of 6573 events provides the basis for a reliable input to the seismic hazard assessment studies for Turkey and its surrounding areas.  相似文献   

18.
This work generalizes the results of tomographic imaging performed by the authors for epicentral zones. Seismic events in North Africa (the M w = 5.8 earthquake of 1985 near the town of Constantine), eastern Anatolia (the Erzincan M w = 6.7 earthquake of 1992), the Lesser and Greater Caucasus (the 1988 Spitak M w = 6.8 and the 1991 Racha M w = 7.0 earthquakes), and northern Sakhalin (the 1995 Neftegorsk M w = 7.1 earthquake) are examined. It is shown how various morphokinematic types of active faults differ in the resulting tomographic images at various depths. A classification of tomographic images of strong earthquake source zones is proposed in accordance with the rank of their generating faults. The sources of the Spitak, Racha, and Erzincan earthquakes are confined to large boundary faults separating tectonic zones. Lower velocity bands are revealed in the tomographic images, and low velocity “pockets” 1–2 km or somewhat more in width penetrating to a depth of up to 15 km are observed near the fault zones. The Constantine and Neftegorsk earthquakes were generated by faults of a lower rank. The source zones of these events are imaged tomographically as narrow gradient zones.  相似文献   

19.
For small earthquakes, focal depths can be estimated jointly when epicenters are located using the arrival times of Pg and Sg waves recorded at seismic stations close to the event. However, if regional network coverage is sparse, this approach does not give accurate results. An alternative solution is the use of the regional depth-phase modeling (RDPM) method when such depth phases are available. Small, shallow earthquakes can generate Rg waves, the amplitudes of which approximately attenuate exponentially with focal depth; whereas, the amplitudes of Sg waves are, on average, less dependent on focal depth. Based on these features, a method using the maximum power spectral ratio (MPSR) between the Rg and Sg segments was developed to determine focal depth. Tests show the focal depth solutions obtained by the MPSR and RDPM methods for five events in an earthquake swarm and one event acquired by inspection are in good agreement. The error in the MPSR-determined focal depth caused by the error in the epicentral distance is in the order of 0.1 km. The error in the focal depth when using a default focal mechanism is in the order of 0.5 km. The quality factor, Q does not generate a significant error. Using the average of focal depths can provide a more reliable solution. Using an azimuth of approximately 45° from the strike direction to generate the synthetic ratio curve can reduce the error. As with any other earthquake locating technique, a reasonable regional crustal model is required when the MPSR method is used. Case studies show that the MPSR method can be used to successfully determine focal depths for events as small as m N 1.6.  相似文献   

20.
Calibration of the Tibetan Plateau Using Regional Seismic Waveforms   总被引:3,自引:0,他引:3  
We use the recordings from 51 earthquakes produced by a PASSCAL deployment in Tibet to develop a two-layer crustal model for the region. Starting with their ISC locations, we iteratively fit the P-arrival times to relocate the earthquakes and estimate mantle and crustal seismic parameters. An average crustal P velocity of 6.2–6.3 km/s is obtained for a crustal thickness of 65 km while the P velocity of the uppermost mantle is 8.1 km/s. The upper layer of the model is further fine-tuned by obtaining the best synthetic SH waveform match to an observed waveform for a well-located event. Green's functions from this model are then used to estimate the source parameters for those events using a grid search procedure. Average event relocation relative to the ISC locations, excluding two poorly located earthquakes, is 16 km. All but one earthquake are determined by the waveform inversion to be at depths between 5 and 15 km. This is 15 km shallower, on average, than depths reported by the ISC. The shallow seismicity cut-off depth and low crustal velocities suggest high temperatures in the lower crust. Thrust faulting source mechanisms dominate at the margins of the plateau. Within the plateau, at locations with surface elevations less than 5 km, source mechanisms are a mixture of strike-slip and thrust. Most events occurring in the high plateau where elevations are above 5 km show normal faulting. This indicates that a large portion of the plateau is under EW extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号