首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

2.
Based on the common approach,the adaptation length in sediment transport is normally estimated astemporally independent.However,this approach might not be theoretically justified as the process of reaching the sediment transport equilibrium stage is affected by the flow conditions in time,especially for fast moving flows,such as scour-hole developing flows.In this study,the two-dimensional(2D) shallow water formulation together with a sediment continuity-concentration(SCC) model were applied to flow with mobile sediment boundary.A timevarying approach was proposed to determine the sediment transport adaptation length to simulate the sediment erosion-deposition rate.The proposed computational model was based on the Finite Volume(FV) method.The Monotone Upwind Scheme of Conservative Laws(MUSCL)-Hancock scheme was used with the Harten Lax van Leer-contact(HLLC) approximate Riemann solver to discretize the FV model.In the flow applications of this paper,a highly discontinuous dam-break,fast sediment transport flow was used to calibrate the proposed timevarying sediment adaptation length model.Then the calibrated model was further applied to two separate experimental sediment transport flow applications documented in the literature,i.e.a highly concentrated sediment transport flow in a wide alluvial channel and a sediment aggradation flow.Good agreement with the experimental data were obtained with the proposed model simulations.The tests prove that the proposed model,which was calibrated by the discontinuous dam-break bed scouring flow,also performed well to represent rapid bed change and steady sediment mobility conditions.  相似文献   

3.
Existing numerical investigations of dam-break flows rarely consider the effects of vegetation.This paper presents a depth-averaged two-dimensional model for dam-break flows over mobile and vegetated beds.In the model,both the consequences of reducing space for storing mass and momentum by the existence of vegetation and dragging the flow are considered:the former is considered by introducing a factor (1-c) to the flow depth,where c is the vegetation density;the later is considered by including an additional sink term in the momentum equations.The new governing equations are discretized by the finite volume method;and an existing second-order central-upwind scheme embedded with the hydrostatic reconstruction method for water depth,is used to estimate the fluxes;the source terms are estimated by either explicit or semi-explicit methods fulfilling the stability requirement.Laboratory experiments of dam-break flows or quasi-steady flows with/without vegetation effects/sediment transport are simulated.The good agreements between the measurements and the numerical simulations demonstrate a satisfactory performance of the model in reproducing the flow depth,velocity and bed deformation depth.Numerical case studies of six scenarios of dam-break flows over a mobile and vegetated bed are conducted.It is shown that when the area of the vegetation zone,the vegetation density,and the pattern of the vegetation distribution are varied,the resulted bed morphological change differs greatly,suggesting a great influence of vegetation on the dam-break flow evolution.Specifically,the vegetation may divert the direction of the main flow,hindering the flow and thus result in increased deposition upstream of the vegetation.  相似文献   

4.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

6.
A two-dimensional (2D) numerical model has been developed to solve shallow water equations for simulation of dam-break flows. The spatial derivatives are discretized using a well-balanced explicit central upwind conservative scheme. The scheme is Riemann solver free and guarantees the positivity of the flow depth over complex topography if the Courant number is kept less than 0.25. The time integration is performed by Euler’s scheme. The model is verified against analytical results for water surface elevation and discharge for three benchmark test cases. A good agreement between analytical solutions and computed results is observed. The property of well-balancing in still water over an uneven bottom is also confirmed. The model is then validated by simulating a laboratory experiment in which a dam break flow propagates over a triangular obstacle. The model performance was found to be satisfactory. A dam break laboratory experimental test case on a frictionless horizontal bottom is also simulated for 2D validation of the model, and good agreement between simulation and the experimental data is observed. The suitability of the proposed model for real life applications is demonstrated by simulating the Malpasset dam-break event, which occurred in 1959 in France. The computed arrival time of the flood wave front and the maximum flow depths at various observation points matched well with the measurements on a 1/400 scale physical model. The overall performance indicates that this model can be applied for simulation of dam-break waves in real life cases.  相似文献   

7.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order “upwind” numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness znm.  相似文献   

9.
The problem of transport of suspended sediment after the break of a dam on an inclined bed is considered. To that end we use the shallow‐water approximation for arbitrary, constant slopes of the bottom, taking into consideration the effect of friction. The numerical technique and the frictional model are validated by comparison with available experimental data and asymptotic analytical solutions, with special attention to the numerical solution near the wetting front. The transport of suspended sediment down the inclined bed is obtained and discussed as a function of the slope of the bed for different values of the parameters characterizing the sediment and its transport properties. For sufficiently large times we always find the formation of roll waves near the water front, which affects the transport of sediments significantly. These strong oscillations are accurately computed with the numerical method used. The relative importance of the bed load (to the suspended load) sediment transport is also discussed as a function of the size of the sediment particles and the slope of the bed for different models on the initiation of sediment suspension from bed load. We also check the dilute sediment approach and characterize the conditions for its failure. Finally, the results of the present simplified model are intended to be used as tests of more complex numerical models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

11.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

12.
13.
Infiltration losses may be significant and warrant proper incorporation into mathematical models for river floods in arid and semi-arid areas, rainfall-induced surface runoffs in watersheds and swashes on beaches. Here, a depth-averaged two-dimensional hydrodynamic model is presented for such processes based on the cell-centred finite volume method on unstructured meshes, with the full Green-Ampt equation evaluating the infiltration rate. A local time stepping strategy is employed along with thread parallelization with Open Multi-processing and high-performance computing to reduce model run time and therefore facilitate applications for large-scale processes. The numerical solutions generally agree with the experimental and field-measured data for typical cases with significant infiltration losses. The case study shows that neglecting infiltration leads to an overestimated discharge hydrograph, which cannot be compensated by means of varied bed resistance as estimated by Manning roughness, and the infiltration parameters play disparate roles in modifying shallow flows compared with Manning roughness. In addition, infiltration affects bed shear stress, which in turn modifies the critical bed sediment size that could be initiated for incipient motion by the flow and therefore needs to be properly accounted for when sediment transport and morphological evolution are to be resolved.  相似文献   

14.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

15.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

16.
1 INTRODUCTIONMany mathematical models for sediment transport have been developed for solving practical Problemsin hydraulic engineering. HoweveT, most of them are not able to simulate the hyper-concentratd flows inthe Lower Yellow Xiver because of the extremely high load concentration of the flows. This paper isdevoted tO the simulation of unsteady sediment trallsport in the Lower Yellow mveLIn this paPer, the riverbed deformation equation is modified and the new expressions for sedi…  相似文献   

17.
LABRIEFINTRODUCTIONOFRANDUNIRRIGATIONDISTRICTYellowRiverisoneofthemainWaterresourcesinNOrthChina.SincethefiftiesirrigationbydivertingwaterfromtheYellowforerdevelOPssteadily.AstheYdlowforerisaheavilysacmentsladenone,sedimentisdiVertedsimultaneouslywhenwaterisdiverted.HOwtoproperlytreatthedivertedsedimentboomesoneOfthekeyproblemsrestrichngthesustainingdevelOPmentofthCwaterresourcesinthatarea.LongchStanceconvopngsedimentisoneofthemainmeasuresfordealingwiththediVertedsedim…  相似文献   

18.
1 INTRODUCTION Evolution of the river bed in alluvial channels has been studied by many researchers using analytical and numerical approaches. The use of analytical approach alone is insufficient for solving natural river engineering problems. With rapid growth in computer technology, numerical models have become a popular means for the study of mobile bed hydraulics. During the past decade, several numerical models have been developed. Most of the computer codes, such as HEC2SR (Si…  相似文献   

19.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

20.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号