首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了研究盐、旱及其交互胁迫下植物生长和生理特性的变化,了解沙漠腹地极端生境下互 叶醉鱼草(Buddleja alternifolia)幼苗的适应性,确定合理的灌溉方式,为沙漠腹地醉鱼草的引种提 供理论依据。通过大田控制实验,设计了 3 个水分梯度和 4 个盐分梯度随机结合实验,定位测量生 长量和生化指标,最后基于隶属函数法综合评价醉鱼草的抗旱耐盐性。结果表明:(1)在干旱胁迫 或低浓度盐胁迫下,醉鱼草的地径、新枝和冠幅生长量均呈上升趋势,而在高盐浓度胁迫下均降 低;水盐交互胁迫下,不同的盐浓度与干旱交互胁迫效果不同,低盐浓度与干旱交互胁迫时(W1S1、 W2S1),植物生长量均上升,高盐浓度与干旱交互胁迫时(W1S3、W2S3),植物生长量均降低。(2)无论 是盐胁迫、干旱胁迫还是盐、旱交互胁迫,醉鱼草游离脯氨酸(Pro)含量随着胁迫程度的增加均呈显 著上升的趋势。(3)醉鱼草的超氧化物歧化酶(SOD)活性和过氧化物酶(POD)活性变化相对复杂, 除了在干旱胁迫时,SOD 活性和 POD 活性都显著下降外,在盐胁迫和交互胁迫时它们各自的变化并 不一致。醉鱼草在盐胁迫、交叉胁迫和干旱胁迫时,渗透调节物质和酶活性各自对应的发生了变 化,没有明显的同步性,存在相互协调的可能,同时植物细胞的敏感性远远强于表型生长的变化, 高盐浓度的伤害并没有表现在植物外部形态上,但酶活性及渗透调节物质却有显著变化。通过隶 属函数分析显示,醉鱼草最佳的生长水盐条件是盐浓度为 8 g·L-1、灌水量为 25 L·次-1,对水盐胁迫 的抗旱耐盐性为:干旱胁迫>交互胁迫>盐胁迫。  相似文献   

2.
胡娟  张洁  盛洲  周宸宇  张旭萍  拉本 《盐湖研究》2022,30(1):95-100
目前我国盐溃土地面积较大,尤其是青藏高原的盐溃地,常伴有干旱、半干旱的生境,导致植物不易生长,生态环境相对恶劣,这种生态现状亟待解决.盐生植物具有一定的耐盐性和耐旱性,是改善盐渍地的首选植物,种子的活力决定了种子萌发的情况,多数学者为改善严峻的生态环境开始了盐生植物引种的研究.测定种子活力有直接方法和间接方法,大多数学...  相似文献   

3.
目前我国盐渍土地面积较大,尤其是青藏高原的盐渍地,常伴有干旱、半干旱的生境,导致植物不易生长,生态环境日渐恶劣,这种生态现状亟待解决。盐生植物具有一定的耐盐性和耐旱性,是改善盐渍地的首选植物,种子的活力决定了种子萌发的情况,多数学者为改善严峻的生态环境开始了盐生植物引种的研究。测定种子活力有直接方法和间接方法,大多数学者采用的是直接方法,即在实验室模拟一定条件直接测定萌发率。本文简述了盐生植物的概况、制造胁迫的主要方法以及检测种子活力的指标,综述了近年来各位学者对盐爪爪、白刺等具有代表性的22种盐生植物在种子萌发期的耐盐性以及抗旱性的相关研究,为改善盐渍地的生态环境、提升盐渍地的生产量提供了理论依据。  相似文献   

4.
水盐胁迫对花花柴种子萌发的影响   总被引:3,自引:0,他引:3  
 水盐胁迫直接影响盐生植物的种子萌发,本研究通过对盐生植物花花柴种子带冠毛与否及不同胁迫处理下种子萌发率的比较分析,探讨花花柴种子萌发期的耐盐特性。对花花柴带冠毛和不带冠毛种子在蒸馏水中的对比萌发结果表明,冠毛对花花柴种子的最终萌发率无影响,但明显延长种子的萌发时间,可能与阻碍种子吸水有关。花花柴种子经过冷处理,成熟的种子没有出现生理休眠现象,有利于种子在条件适宜时迅速起始萌发。采用不同浓度NaCl和等渗的PEG6000 (聚乙二醇) 处理花花柴种子,结果表明:①NaCl和PEG胁迫对花花柴种子的萌发具有非常明显的抑制作用,主要表现为降低种子的萌发率,延长种子的萌发时间,抑制胚根和胚芽的生长;②NaCl对花花柴种子萌发的抑制作用明显地大于等渗的PEG,说明离子胁迫是影响花花柴种子萌发的主要因素;③花花柴种子萌发的耐盐临界值为213 mM,极限值为340 mM;④低浓度的NaCl溶液(50 mM)不影响花花柴种子的萌发和胚芽的生长,表明花花柴种子适宜在低盐条件下萌发;⑤盐胁迫下未萌发种子的复水实验结果表明,高盐处理后未萌发的种子具有较高的复萌率,但各处理下种子最终萌发率没有显著差异,表明高盐能使种子休眠,但种子的活力仍能保持,有利于种群的维持。  相似文献   

5.
沙冬青种子萌发期抗逆性研究   总被引:5,自引:0,他引:5  
 利用不同浓度的聚乙二醇(PEG)和NaCl溶液处理沙冬青种子,测定种子发芽率、发芽势、发芽指数、活力指数、幼苗叶片电导率、可溶性蛋白含量及丙二醛(MDA)含量。结果表明,随着胁迫强度增加,沙冬青种子萌发能力下降,幼苗叶片电导率上升,MDA含量上升。PEG浓度由5%升至15%时可溶性蛋白质含量上升,超过15%时,可溶性蛋白含量下降; NaCl浓度在0到1.5%范围内,沙冬青幼苗可溶性蛋白含量随NaCl浓度增大而上升。对两种胁迫条件下生长及生理指标的综合分析表明,沙冬青在种子萌发期和幼苗期有较强的抗旱和抗盐能力。  相似文献   

6.
7.
In a blowing sand system,the wind provides the driving forces for the particle movement while the moving particles exert the opposite forces to the wind by extracting its momentum.The wind-sand interaction that can be characterized by shear stress and force exerted on the wind by moving particles results in the modification of wind profiles.Detailed wind pro-files re-adapted to blown sand movement are measured in a wind tunnel for different grain size populations and at differ-ent free-stream wind velocities.The shear stress with a blowing sand cloud and force exerted on the wind by moving par-ticles are calculated from the measured wind velocity profiles.The results suggest that the wind profiles with presence of blowing sand cloud assume convex-upward curves on the u(z)-ln(z) plot compared with the straight lines characterizing the velocity profiles of clean wind,and they can be better fitted by power function than log-linear function.The exponent of the power function ranging from 0.1 to 0.17 tends to increase with an increase in wind velocity but decrease with an increase in particle size.The force per unit volume exerted on the wind by blown sand drift that is calculated based on the empirical power functions for the wind velocity profiles is found to decrease with height.The particle-induced force makes the total shear stress with blowing sand cloud partitioned into air-borne stress that results from the wind velocity gradient and grain-borne stress that results from the upward or downward movement of particles.The air-borne stress in-creases with an increase in height,while the grain-borne stress decreases with an increase in height.The air-borne shear stress at the top of sand cloud layer increases with both wind velocity and grain size,implying that it increases with sand transport rate for a given grain size.The shear stress with a blowing sand cloud is also closely related to the sand transport rate.Both the total shear stress and grain-borne stress on the grain top is directly proportional to the squ  相似文献   

8.
太平洋风应力平均场的特征   总被引:5,自引:0,他引:5  
本文利用迄今世界上最完善精细的全球综合海洋大气资料集(COADS)提供的风场资料,计算了1949—1987年近40年平均网格为5°×5°的太平洋海域逐月风应力场,并分析了各纬度带平均纬向和经向风应力的逐月变化以及1、4、7和10月的风应力场的分布特征。风应力的计算采用整体空气动力学公式,其中曳力系数的计算是以Bunker给出的曳力系数随风和海气温差变化的数表为基础,用最小二乘法,考虑了大气层结热力影响和风切变的动力影响,拟合了一个二次多项式。计算结果表明其精度和实用性都较好。  相似文献   

9.
Seed germination and early seedling growth are crucial stages for plant establishment. Two neutral (NaCl and Na2SO4) and two alkali (NaHCO3 and Na2CO3) salts were selected to investigate their effects on germination and recovery responses in Reaumuria soongorica. Results show that both salt types significantly reduced germination and radicle elongation. The rate of germination and emergence of R. soongorica seeds continuously decreased as salinity increased, and the time to achieve maximum germination rate was delayed. The speed of seed germination dropped rapidly as salt concentration increased. Alkaline salts restricted the germination rate of R. soongorica seeds, and stresses resulting from alkaline salts and high concentrations of neutral salts resulted in many deformed seedlings. The length of the radicle and germ decreased with increasing salt concentration, but certain concentrations of salt and increased pH promoted germ growth. The results of regression analysis show that salt concentration was the dominant factor inhibiting R. soongorica seed germination rate. Salinity, buffering capacity, and pH all affected embryo growth, but salinity had the most pronounced effect. Seed viability under highly saline conditions appears to be a better indicator of adaptation to saline environments than seed germination under saline conditions.  相似文献   

10.
Observations of stress relaxation before earthquakes   总被引:20,自引:0,他引:20  
  相似文献   

11.
盐分与水分胁迫对两种猪毛菜种子萌发的影响   总被引:6,自引:3,他引:6  
王娅  李利  钱翌  张希明 《干旱区地理》2007,30(2):217-222
通过对盐分与水分胁迫对钠猪毛菜和紫翅猪毛菜种子萌发的影响的分析,结果显示:钠猪毛菜与紫翅猪毛菜种子萌发的最适温度分别为25℃和20℃。在盐溶液和PEG溶液中,两个种子的萌发规律相似,都是随着水势的降低,萌发率和萌发速率下降。在盐胁迫下钠猪毛菜种子萌发的最低水势接近-7.2 MPa,紫翅猪毛菜种子萌发的最低水势接近-6.15 MPa;在水分胁迫下两种种子萌发的最低水势均未超过-2.0 MPa。并且在相同水势下,钠猪毛菜的最终萌发率、萌发指数高于紫翅猪毛菜。两个种对盐分胁迫的忍耐能力超过对水分胁迫。适宜萌发温度下,钠猪毛菜与紫翅猪毛菜的耐盐极限值分别为-6.29 MPa和-6.03 MPa。  相似文献   

12.
13.
Effects of sphericity are commonly ignored in the lithospheric bending problem. In order to examine its effects, I solve a simple axisymmetric spherical-shell model. The full solution and the asymptotic solution are derived from the basic equations, and their relationship to the flat-plate solution is examined. For displacement, effects of sphericity are small, and use of the flat-plate solution produces results that are numerically indistinguishable from those of the spherical solution. The most significant effect of sphericity appears in the stress, in particular the normal stress along the strike direction of the trench. This stress is approximately given by Eur/R , where E is Young's modulus, ur is the vertical deformation of the shell and R is its radius of curvature. If the shell (lithosphere) is bent downwards and reaches 30 km, this stress can become about 5 kbar in the Earth. While plastic behaviour may set in under such high pressure conditions and analysis beyond elasticity theory may be required, sphericity may be a cause of large compressive stress in the trench strike direction. This stress may play an important role in forming the overall shape of the Earth's subduction zones.  相似文献   

14.
15.
刘建新  王鑫  贾海燕  李东波 《中国沙漠》2012,32(5):1342-1348
 为了探讨牧草光合功能对盐、碱胁迫的响应差异,采用营养液砂培方法,分别研究了不同浓度(0、50、100、150、200 mmol·L-1)NaCl和NaHCO3胁迫对黑麦草幼苗生长、叶片光合色素含量、气体交换和叶绿素荧光参数、叶绿体Hill反应活力和ATPase活性的影响。结果表明:①随着处理浓度的增加,黑麦草幼苗全株干重、叶片叶绿素和类胡萝卜素含量、净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)明显下降。当NaCl浓度小于100 mmol·L-1时,胞间CO2浓度(Ci)显著降低,气孔限制值(Ls)明显增加,随着NaCl浓度进一步增大,Ci显著增加,Ls显著减小;NaHCO3胁迫下Ci随着处理浓度增大而显著增加,Ls则显著减小。但NaHCO3胁迫下各指标下降或增加的幅度大于NaCl胁迫。②随着NaCl和NaHCO3胁迫强度的增大,黑麦草幼苗荧光参数PSⅡ最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)、光化学淬灭(qP)及叶绿体Hill反应和ATPase活性明显下降,非光化学淬灭(NPQ)显著提高,叶片吸收的光能中用于光化学反应的比例(P)显著减小,天线热耗散的比例(D)显著增大。在相同浓度下,NaHCO3胁迫的各荧光参数及Hill反应和ATPase活性的变幅大于NaCl胁迫,说明NaHCO3胁迫对幼苗的伤害程度大于NaCl胁迫。由此表明,黑麦草对碱的耐性低于盐,这可能与碱的高pH值更多引起光合色素含量下降和光合机构受到严重伤害有关。  相似文献   

16.
10 M ≥ 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939–1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1–10 bar, equivalent to 3–30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ≥ 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.  相似文献   

17.
18.
19.
Experiments were conducted to determine the effects of temperature, light, osmotic stress, hydration-dehydration regime and stress relief on the seed germination of Periploca sepium Bunge (Chinese silk vine Asclepiadaceae), which is a native shrub in the Loess Plateau of Northwest China. Freshly harvested seeds germinated equally well in both light and darkness. Seeds germinated under all of tested temperature regimes, and much faster when temperature was maintained at 30, 35, and 30/20, 30/25, 35/25, 35/30 °C range, with more than 90% of seeds germinating within 2 days. Moderate osmotic stress did not inhibit germination at any tested temperature. At 30 °C, seed germination was not affected significantly above −0.8 MPa. The hydration-dehydration pretreatment showed none side effects on P. sepium seeds and the seeds germinated more rapidly as soon as optimal water condition was restored. These results show the advantages of P. sepium, which is a competitive and widespread shrub in dry areas, and provide useful information for vegetation restoration in these drought-prone regions.  相似文献   

20.
Wind tunnel experiments for ‘Raindrop Detachment and Wind-Driven Transport’ (RD–WDT) process were conducted under improved lateral jetting induced by wind velocities of 6.4, 10, and 12 m s− 1 at nozzle operating pressures of 75, 100, and 150 kPa. Wind-driven rainfalls were also incident on the windward and leeward slopes of 4° and 9° to have a broad variation in the angle of incidence. The objective of this experimental set-up was to distinguish the roles of both impact components of obliquely striking wind-driven raindrops on RD and wind on WDT. Raindrop impact components and reference horizontal wind were quantified by normal (Etz) and horizontal (Etx) kinetic energy fluxes and wind shear velocity (u), respectively, to physically model the process of RD–WDT. The results showed, at each level of u, differential sand transport rates by RD–WDT (qm(RD–WDT)) occurred depending on the magnitude of raindrop impact components, and qm(RD–WDT) increased as the relative contribution of Etz increased. Although Etx was more correlated with qm(RD–WDT) than Etz, the extreme increases in Etx at the expense of Etz brought about no increases but decreases in qm(RD–WDT). An RD–WDT model was built under the process of examining the discrete effects of Etz and Etx on RD together with u and resulted in a better coefficient of determination (R2 = 0.89) than only total kinetic energy (Et) did alone with u (R2 = 0.84). In this study, Etx was strongly related to u and not to Etz, which was the principal difference from the previous rainsplash studies, which relied on the compensatory lateral jet development by the compressive pressure build-up at the raindrop–soil interface. Including Etx in the RD–WDT model both separated the distinct role of each raindrop impact component in RD and improved the performance of u in WDT by better distinguishing its interaction with Etx, which was not explicitly separated in previous models of RD–WDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号