首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the laws of X-ray diffraction in crystals, Laue lenses offer a promising way to achieve the sensitivity and angular resolution leap required for the next generation of hard X-ray and gamma-ray telescopes.The present paper describes the instrumental responses of Laue diffraction lenses designed for nuclear astrophysics. Different possible geometries are discussed, as well as the corresponding spectral and imaging capabilities. These theoretical predictions are then compared with Monte-Carlo simulations and experimental results (ground and stratospheric observations from the CLAIRE project). PACS 95.55.Ka, 61.50.Ah, 61.10.−i, 41.50.+h  相似文献   

2.
The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86 m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Si x , x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56 Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising. PACS: 95.55.Ka, 29.30.Kv, 61.10.-i  相似文献   

3.
The objective of the R&D project CLAIRE was to prove the principle of a gamma-ray lens for nuclear astrophysics. CLAIRE's Laue diffraction lens has a diameter of 45 cm and a focal length of 277 cm; 556 germanium-silicon crystals are tuned to focus 170 keV photons onto a 1.5 cm diameter focal spot. Laboratory measurements of the individual crystals and the entire lens have been used to validate a numerical model that we use to estimate the lens performance for a source at infinity. During a stratospheric balloon flight on 2001 June 14, CLAIRE was directed at the Crab nebula by a pointing system able to stabilize the lens to within a few arcseconds of the target. In 72 min of valid pointing time, 33 photons from the Crab were detected in the 3 keV bandpass of the lens: CLAIRE's first light! The performance of CLAIRE's gamma-ray lens, namely the peak reflectivity for a polychromatic source (9±1%), has been confirmed by ground data obtained on a 205 meter long test range. CLAIRE's measured performance validates the principle of a Laue lens for nuclear astrophysics, opening the way for a space-borne gamma-ray lens telescope that will achieve one to two orders of magnitude improvement in sensitivity over present technologies.  相似文献   

4.
In this paper we report progresses in the realization of self-standing bent crystals, which are suitable as optical elements for Laue lenses, i.e. for optic to focus hard X-rays in the 100–1000 keV energy range. The curvature of the crystals is a key factor to enhance diffraction efficiency and energy bandpass for such an optic. In particular, two bent crystals featuring a thickness of 5 mm, made of Si and Ge respectively, were produced at the Sensor and Semiconductor Laboratory in Ferrara, Italy. The crystals were bent through the application of a carbon fibre composite. This proved to be a relatively low cost method for crystal bending, suitable for mass production. The manufactured samples were characterised via optical interferometry, and showed a fairly uniform curvature. Finally, the samples were tested exploiting hard X-ray diffraction at the ID11 facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. A careful analysis of the experimental data highlighted that the samples feature large energy bandpass, wide geometrical acceptance for incoming hard X-rays, and high diffraction efficiency. We therefore conclude that such self-standing crystals are good candidates as Laue lens components for astrophysics applications.  相似文献   

5.
With ESA’s INTEGRAL mission gamma-ray astronomy has advanced to the point where major scientific advances must be expected from detailed studies of the many new point sources. The interest in developing focusing telescopes operating in the soft gamma-ray regime up to 1 MeV is therefore mounting rapidly. Telescopes based on Laue diffraction of gamma-rays from crystals appear as one promising route, although the practical difficulties of realizing a large scale Laue lens are certainly not small. In this paper I have attempted to develop an optimized lens design considering the size and mass constraints of a specific medium size launch vehicle. The introduction of the lens mass as a primary design driver has some surprising effects for the choice of material for the crystals and new tradeoff considerations are introduced.  相似文献   

6.
Both Ge1−x Si x mosaic crystals and Si1−x Ge x crystals with gradient of composition could be grown using the modified Czochralski technique to produce the diffracting elements for the MAX gamma ray telescope. Although many elements cut from the mosaic crystal and used before for CLAIRE gamma ray telescope had an efficiency up to 20%, the overall efficiency of the lens was about 8.1 ± 0.7 %, which is more than twice lower than the theoretically predicted efficiency. Some causes of this behaviour are discussed. In addition to mosaic crystals, the growth of Si1−x Ge x crystals with a gradient of composition and their properties are analysed. Such composition-gradient crystals could be a promising way to improve the diffraction efficiency of Laue lens for MAX.  相似文献   

7.
We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM–X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= ̳LARge ̳Italian ̳X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.  相似文献   

8.
The realization of a Laue lens for astronomical purposes involves the mass production of a series of crystalline tiles as optical components, allowing high-efficiency diffraction and high-resolution focusing of photons. Crystals with self-standing curved diffraction planes is a valid and promising solution. Exploiting the quasi-mosaic effect, it turns out to be possible to diffract radiation at higher resolution. In this paper we present the realization of 150 quasi-mosaic Ge samples, bent by grooving one of their largest surface. We show that grooving method is a viable technique to manufacture such crystals in a simple and very reproducible way, thus compatible with mass production. Realized samples present very homogenous curvature. Furthermore, with a specific chemical etch, it is possible to fine adjust one by one the radius of curvature of the grooved samples. Realized crystals was selected for the ASI’s Laue project, that involves the implementation of a prototype of a Laue lens for hard X- and soft γ-ray astronomy.  相似文献   

9.
Large single crystals of copper with an uniform and very narrow mosaic spread between 25 seconds and 1 minute of arc are now available at I.L.L. This result is of great interest in the construction of a Laue lens for astrophysical applications for which such quality copper single crystals may be used. The X-ray diffraction properties of copper single crystals produced at I.L.L. were studied for x-ray energies ranging from 100 keV to 400 keV. Several monocrystalline plates with different thicknesses and mosaic distributions were then prepared from the as-grown crystals in order to measure their diffraction efficiency as a function of energy. As expected, the value of the peak reflectivity depends on the crystal thickness. Reflectivity measurements show the excellent properties of copper crystals for gamma-ray diffraction. A peak reflectivity of 24% was measured at 220 keV from a copper single crystal of 3.75 mm thickness having a mosaic spread of 1.5 minutes of arc. Some technical aspects on the preparation of copper single crystal plates are also discussed.  相似文献   

10.
Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60–600keV. The high segmentation of this type of detector (1–2mm pixel size) and the good energy resolution (a few keV FWHM at 500keV) will allow high sensitivity polarisation measurements (a few % for a 10mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polarisation through the use of Monte Carlo simulations (based on the GEANT 4 toolkit) for on and off-axis sources with power law emission spectra using the point spread function of a Laue lens in a feasible configuration.  相似文献   

11.
Various branches of observational information, and related physical problems concerning the bright, relatively close, Algol binary δ Lib are discussed. Times of minimum light confirm the classical Algol status, which, combined with the optical and IR photometry of Lazaro et al. (2002), provide the basis for a good understanding of the system’s basic parameters. New spectroscopy from the Coudé spectrograph of the Rozhen Observatory (Bulgaria) allows further information on the model and the mass transfer process. Very high resolution radio observations would also have much to reveal about astrophysics of the semi-detached configuration, not only directly, by informing about the outermost envelopes of the components, but indirectly through high accuracy positional information. We show how this may be related to careful period and astrometric studies. δ Lib thus provides a rich source of information on the astrophysics of the Algol configuration.  相似文献   

12.
MAX is a proposed Laue lens gamma-ray telescope taking advantage of Bragg diffraction in crystals to concentrate incident photons onto a distant detector. The Laue lens and the detector are carried by two separate satellites flying in formation. Significant effort is being devoted to studying different types of crystals that may be suitable for focusing gamma rays in two 100 keV wide energy bands centered on two lines which constitute the prime astrophysical interest of the MAX mission: the 511 keV positron annihilation line, and the broadened 847 keV line from the decay of 56Co copiously produced in Type Ia supernovae. However, to optimize the performance of MAX, it is also necessary to optimize the detector used to collect the source photons concentrated by the lens. We address this need by applying proven Monte Carlo and event reconstruction packages to predict the performance of MAX for three different Ge detector concepts: a standard coaxial detector, a stack of segmented detectors, and a Compton camera consisting of a stack of strip detectors. Each of these exhibits distinct advantages and disadvantages regarding fundamental instrumental characteristics such as detection efficiency or background rejection, which ultimately determine achievable sensitivities. We conclude that the Compton camera is the most promising detector for MAX in particular, and for Laue lens gamma-ray telecopes in general.  相似文献   

13.
A major goal of the MAX program is to detect and measure gamma rays produced following the nuclear reactions that take place in a supernova explosion. To detect a reasonable number of supernovae, sensitivities of the order of a few times 10-7 γ cm-2sec-1 are needed – much better than possible with current instruments. The approach in the MAX program is to use a crystal diffraction lens to collect photons over a large area and concentrate them on a small well-shielded detector, greatly improving the signal to noise ratio. The crystals need to have both high diffraction efficiency and a relatively broad energy bandwidth. With mosaic crystals there is a trade-off between bandwidth and diffraction efficiency – one can have either high efficiency or large bandwidth, but not both without losing too much intensity through atomic absorption. A recent breakthrough in our understanding of crystal diffraction for high-energy gamma rays has made it possible to develop crystals that have both high diffraction efficiency and a relatively broad energy bandwidth. These crystals have near perfect crystal structure, but the crystalline planes are slightly curved. Such curved planes can be obtained in 3 different ways, by using mixed crystals with a composition gradient, by applying a thermal gradient, and by mechanically bending a near perfect crystal. A series of experiments have been performed on all three types of crystals using high-energy x-ray beams from the Advanced Photon Source at the Argonne National Laboratory. Experiments performed at 3 energies, 93 keV, 123 keV and 153 keV, with both the thermal gradient Si crystals and with the mechanically bent Si crystals, demonstrated that one can achieve diffraction efficiencies approaching 100% with moderate energy bandwidths (ΔE/E = 1.4%) and low atomic absorption (transmission = 0.65), in excellent agreement with theory. The use of this type of diffraction crystal is expected to increase the sensitivity of gamma ray telescopes by a factor of 5 over that possible with normal mosaic crystals.  相似文献   

14.
If sensitive enough, future missions for nuclear astrophysics will be a great help in understanding supernovae explosions. In contrast to coded-mask instruments, both crystal diffraction lenses and grazing angle mirrors offer a possibility to construct a sensitive instrument to detect γ-ray lines in supernovae. We report on possible implementations of grazing angle mirrors and simulations carried out to determine their performance.  相似文献   

15.
We use the flexibility of the concept of a fermion–boson star to explore different configurations, ranging from objects of atomic size and masses of the order 1018 g, up to objects of galactic masses and gigantic halos around a smaller core, with possible interesting applications to astrophysics and cosmology, particularly in the context of dark matter. PACS codes: 04.40.−b, 95.35.+d  相似文献   

16.
We will report on the equipment and performance of the X-ray facility of the University of Ferrara. Initially developed to test the PDS (Phoswich Detection System) instrument aboard the BeppoSAX satellite and to perform reflectivity measurements of mosaic crystal samples of HOPG (Highly Oriented Pyrolytic Graphite), with time the facility has been improved and its applications extended. Now these applications include test and calibration of hard X-ray (> 10 keV) detectors, reflectivity measurements of hard X-ray mirrors, reflectivity tests of crystals and X-ray transparency measurements. The facility is being further improved in order to determine the optical axis mosaic crystals in Laue configuration within a project devoted to develop a hard X-ray (> 60 keV) focusing optics (Pisa, A. et al.: in press, Feasibility study of a Laue lens for hard X-rays for space astronomy, SPIE Proc., 5536).  相似文献   

17.
We report on results of observation of the focusing effect from the planes (220) of Gallium Arsenide (GaAs) crystals. We have compared the experimental results with the Monte Carlo simulations of the focusing capability of GaAs tiles performed with a dedicated ray-tracer. The GaAs tiles were bent using a lapping process developed at the cnr/imem - Parma (Italy) in the framework of the laue project, funded by ASI, dedicated to build a broad band Laue lens prototype for astrophysical applications in the hard X-/soft γ-ray energy range (80-600 keV). We present and discuss the results obtained from their characterization, mainly in terms of focusing capability. Bent crystals will significantly increase the signal to noise ratio of a telescope based on a Laue lens, consequently leading to an unprecedented enhancement of sensitivity with respect to the present non focusing instrumentation.  相似文献   

18.
S. Chandrasekhar’s interactions with graduate students in his more than a quarter century at Yerkes Observatory are described. His graduate teaching, Ph.D. thesis students, colloquia and colloquium series, and seminar series were all important aspects of this side of his scientific research career. His managing editorship ofThe Astrophysical Journal, his one experience in observational astrophysics, a second paper he wrote describing some of the early observational work at Yerkes Observatory, and a third on “the case for astronomy” are all discussed. A famous myth about one of his courses is corrected, and the circumstances under which the “S. Candlestickmaker” parody was written are recounted. Chandra’s computers, recruited in the Williams Bay community, are mentioned. A complete or nearly complete table of all the thesis students who received their Ph.D. degrees under his supervision, at Yerkes and on the campus in Chicago up through his last one in Astronomy and Astrophysics in 1973, is presented, with references to their published thesis papers.  相似文献   

19.
SIMBOL-X is a hard X-ray mission based on a formation flight architecture, operating in the 0.5–80 keV energy range, which has been selected for a comprehensive Phase A study, being jointly carried out by CNES and ASI. SIMBOL-X makes uses of a long (in the 25–30 m range) focal length multilayer-coated X-ray mirrors to focus for the first time X-rays with energy above 10 keV, resulting in at least a two orders of magnitude improvement in angular resolution and sensitivity compared to non focusing techniques used so far. The SIMBOL-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics, related in particular to the physics and energetic of the accretion processes on-going in the Universe, also performing a census of black holes on all scales, achieved through deep, wide-field surveys of extragalactic fields and of the Galactic center, and the to the acceleration of electrons and hadrons particles to the highest energies. In this paper, the mission science objectives, design, instrumentation and status are reviewed. PACS: 95.55 – Astronomical and space-research instrumentation 95.85 – Astronomical Observations 98.85.Nv – X-ray  相似文献   

20.
Silicon mono-crystals have been bent thanks to a series of parallel superficial indentations on one of the largest faces of the crystals. This technique relies on irreversible compression of the crystal beneath and beside the indentations. This latter causes deformation with no need for external device, resulting in a uniform self-standing curvature within the crystal. Indented Si crystals have been characterized at European Synchrotron Radiation Facility using a monochromatic beam ranging from 150 to 700 keV. Crystals exhibited very high diffraction efficiency over a broad range of energy, peaking 95% at 150 keV. Measured angular spread of the diffracted beam was always very close to the morphological curvature of the sample under investigation, proving that the energy passband of bent crystals can be controlled by simply imparting a selected curvature to the sample. The method of superficial indentations was found to offer high reproducibility and easy control of diffraction properties of the crystals. Moreover the method is cheap and simple, being based on mass production tools. A Laue lens made of crystals bent by superficial indentations can provide high-efficiency concentration of hard x-ray photons, leading significant improvement in many astrophysical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号