首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Magnetic and gravity data collected during a GLORIA survey of the Indus Fan provide new information on the earliest sea-floor spreading history of the Arabian Sea. A negative gravity anomaly correlates with the buried Laxmi Ridge. This ridge is interpreted here to be a sliver of continental crust adjacent to the oceancontinent transition which bounds thinned, probably intruded, transitional crust to the NE. The oldest sea-floor spreading anomaly is anomaly 28 (65-66 Ma), breakup occurring at the time of the Deccan Traps volcanic event. The earliest oceanic crust formed from two phases of rift propagation which accommodates the angular disparity between the E-W trending anomalies in the western Arabian Sea and the NE-SW trending western part of the Laxmi Ridge. Flow-line projection shows that the Laxmi ridge forms the conjugate structure to the northern Mascarene Plateau margin.  相似文献   

2.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

3.
This paper describes a method for determining Moho depth, lithosphere thinning factor (γ= 1 − 1/β) and the location of the ocean–continent transition at rifted continental margins using 3-D gravity inversion which includes a correction for the large negative lithosphere thermal gravity anomaly within continental margin lithosphere. The lateral density changes caused by the elevated geotherm in thinned continental margin and adjacent ocean basin lithosphere produce a significant lithosphere thermal gravity anomaly which may be in excess of −100 mGal, and for which a correction must be made in order to determine Moho depth accurately from gravity inversion. We describe a method of iteratively calculating the lithosphere thermal gravity anomaly using a lithosphere thermal model to give the present-day temperature field from which we calculate the lithosphere thermal density and gravity anomalies. For continental margin lithosphere, the lithosphere thermal perturbation is calculated from the lithosphere thinning factor (γ= 1 − 1/β) obtained from crustal thinning determined by gravity inversion and breakup age for thermal re-equilibration time. For oceanic lithosphere, the lithosphere thermal model used to predict the lithosphere thermal gravity anomaly may be conditioned using ocean isochrons from plate reconstruction models to provide the age and location of oceanic lithosphere. A correction is made for crustal melt addition due to decompression melting during continental breakup and seafloor spreading. We investigate the sensitivity of the lithosphere thermal gravity anomaly and the predicted Moho depth from gravity inversion at continental rifted margins to the methods used to calculate and condition the lithosphere thermal model using both synthetic models and examples from the North Atlantic.  相似文献   

4.
北冰洋地质构造及其演化   总被引:2,自引:0,他引:2       下载免费PDF全文
北冰洋及其周围的陆架海资源十分丰富,尤其是油气和煤炭。但受自然条件的限制,调查程度很低,许多地质与构造问题尚未解决。区域构造的认识主要依赖航磁测量结果。本文试图综合各国对北冰洋地区的研究现状,形成对该区地质构造及其演化的认识:1)欧亚海盆磁条带清晰,对海盆构造和演化历史认识争议最小,识别的最老磁条带为25,因此海盆大致于58Ma开始张开。磁条带13,之后,Yermak高地与莫里斯?杰塞普隆起分离,欧亚海盆与北大西洋连通。2)从地壳结构与地壳厚度,以及其它资料来看,阿尔法海岭-门捷列夫海岭与罗蒙诺索夫海岭一样,应为陆壳,可能是先后从巴伦支陆架裂离形成的。3)马卡罗夫海盆为典型的洋壳,其形成方式和时代还很少约束,其中观点之一是在晚赛诺曼期-早始新世,随阿尔法海岭-门捷列夫海岭裂离巴伦支陆架,海底扩张形成,并随Gakkel扩张中心在晚古新世的形成而逐步衰退。4) 加拿大海盆可能是北冰洋最早形成的海盆,其形成时间与机制至今仍所知甚少,但可能是从140~135Ma至95~80Ma,随新西伯利亚-楚科奇-阿拉斯加微板块旋转裂离加拿大北部陆缘形成。5)北冰洋的演化大致可以分为3个主要阶段:晚侏罗世-早白垩世、晚白垩世-新生代早期、新生代。第一阶段,加拿大海盆地的扩张中心形成、演化与消亡,第二阶段是拉布拉多-巴芬-马卡罗夫扩张中心的形成与演化,在始新世停止活动,第三阶段,极慢速的Mohna、Knipovich和Gakkel洋中脊的扩张,致使欧亚海盆形成。  相似文献   

5.
ABSTRACT The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One-dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two- and three-dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland-type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.  相似文献   

6.
The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland- This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.  相似文献   

7.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

8.
Seismic reflection profiles from Mesozoic oceanic crust around the Blake Spur Fracture Zone (BSFZ) in the western North Atlantic have been widely used in constraining tectonic models of slow-spreading mid-ocean ridges. These profiles have anomalously low basement relief compared to crust formed more recently at the Mid-Atlantic Ridge at the same spreading rate. Profiles from other regions of Mesozoic oceanic crust also have greater relief. The anomalous basement relief and slightly increased crustal thickness in the BSFZ survey area may be due to the presence of a mantle thermal anomaly close to the ridge axis at the time of crustal formation. If so, the intracrustal structures observed may be representative of an atypical tectonic regime.  相似文献   

9.
Expanding spread profile at the northern Jan Mayen Ridge   总被引:1,自引:0,他引:1  
An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.  相似文献   

10.
本文根据在印度洋实测的重力资料,用sinx/x反演了一些典型构造的莫氏面深度,对印度洋两种不同类型的大陆边缘、大洋中脊、无震海岭、深海盆地的重力异常特征及地质意义进行了较深入的研究,结果表明,东南非岸外以张性下沉为主,构造活动比较单一,其上的重力异常为单调的正负不对称异常,说明这儿的被动陆缘基本上处于均衡状态;而印度洋东北边缘的太平洋型活动陆缘,为一复杂的火山岛弧系,这里的重力异常面貌复杂,反映了该地区处于非均衡状态;查戈斯-拉克代夫海岭为印度洋中典型的无震海岭,它不应属于印度洋中脊的一部分;印度洋中的大部分深海盆,其上具有典型的大洋重力组合,说明印度洋存在着广大的大洋型原生地壳。  相似文献   

11.
Gravity studies of the Rockall and Exmouth Plateaux using SEASAT altimetry   总被引:1,自引:0,他引:1  
Abstract SEASAT altimetric measurements are used to determine the gravity anomalies across two passive continental margins: the western margin of the Rockall Plateau, UK, and the Exmouth Plateau off north-west Australia. The small gravity anomalies observed over the starved western margin of the Rockall Plateau require the existence of a major density contrast within the crust, as well as the Moho, and show that the elastic thickness is less than 5 km at the time of rifting. The gravity anomaly over the Exmouth Plateau is compared with the gravity anomaly calculated from the sediment loading of a thin elastic plate, taking account of the variation in crustal thickness. This comparison shows that the Exmouth Plateau also has a small effective elastic thickness of 5 km, even for loads emplaced between 60 and 120 Myr after rifting. Elastic thicknesses of about 5 km have also been reported for other sedimentary basins, and are to be expected if the rheological properties of the crust and mantle depend on the ratio of the present temperature to the melting temperature. Flexural effects are therefore likely to be of minor importance in sedimentary basins.  相似文献   

12.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

13.
Abstract Rifted margin architecture along part of the southern Gabonese margin is interpreted from four deep-penetration, multichannel seismic reflection (MCS) profiles. A series of synthetically faulted crustal blocks are identified, separated by dominantly seaward-dipping fault zones formed during Cretaceous rifting between Africa and South America. Extensional strain ratios are ≅ 1.5. These faults appear either to transect the entire crustal section or are interrupted by discontinuous zones of midcrustal reflections which may represent detachments.
Outer acoustic basement highs are situated just seaward of the continental slope. On the combined basis of seismic geometry, an associated positive magnetic anomaly and an increase in free-air gravity, these outer highs are interpreted to mark faulted transitions from rifted continental crust to 'proto-oceanic crust', presumably composed of mafic volcanic rocks and possibly slivers of attenuated continental crustal blocks. The outer edge of Aptian salt lies °165 km south-west of the edge of the continental shelf. The salt forms an° 1.5-km-thick horizon overlying the outer highs, and it may be autochthonous there, suggesting salt was deposited contemporaneously with emplacement of proto-oceanic crust.
Differential subsidence and tilting between continental rift-blocks during post-rift margin subsidence has resulted in a sympathetic terrace-ramp geometry in overlying Aptian salt. Salt terraces form above tops of crustal blocks, where salt tends to rise vertically, creating pillows and diapirs. Ramps connecting terraces tend to form above seaward-facing fault zones; salt flowage there has been both lateral and vertical, creating triangular diapirs along the footwalls of growth faults. Most of these growth-faults sole within the salt base, but a few continue into the interpreted synrift succession.  相似文献   

14.
Summary. In 1984, the Australian Bureau of Mineral Resources and the Geological Survey of Queensland recorded a regional seismic reflection profile of over 800 km length from the eastern part of the Eromanga Basin to the Beenleigh Block east of the Clarence Moreton Basin. A relatively transparent upper crustal basement with an underlying, more reflective lower crust is characteristic of much of the region. Prominent westerly dipping reflectors occur well below the sediments of the eastern margin of the Clarence Moreton Basin and the adjacent Beenleigh Block, and provide some of the most interesting features of the entire survey. A wide angle reflection/refraction survey of 192 km length and an expanding reflection spread of 25 km length were recorded across the Nebine Ridge. The only clear deep reflectors are interpreted as P-to-SV or SV-to-P converted reflections from a mid-crustal boundary at a depth of about 17 km. The combined Nebine Ridge data provide well-constrained P and S wave velocity models of the upper crust, and suggest a crustal structure quite different from that beneath the adjacent Mesozoic basins.  相似文献   

15.
Interpretation of long‐offset 2D depth‐imaged seismic data suggests that outer continental margins collapse and tilt basinward rapidly as rifting yields to seafloor spreading and thermal subsidence of the margin. This collapse post‐dates rifting and stretching of the crust, but occurs roughly ten times faster than thermal subsidence of young oceanic crust, and thus is tectonic and pre‐dates the ‘drift stage’. We term this middle stage of margin development ‘outer margin collapse’, and it accords with the exhumation stage of other authors. Outer continental margins, already thinned by rifting processes, become hanging walls of crustal‐scale half grabens associated with landward‐dipping shear zones and zones of low‐shear strength magma at the base of the thinned crust. The footwalls of the shear zones comprise serpentinized sub‐continental mantle that commonly becomes exhumed from beneath the embrittled continental margin. At magma‐poor margins, outer continental margins collapse and tilt basinward to depths of about 3 km subsea at the continent–ocean transition, often deeper than the adjacent oceanic crust (accreted later between 2 and 3 km). We use the term ‘collapse’ because of the apparent rapidity of deepening (<3 Myr). Rapid salt deposition, clastic sedimentation (deltaic), or magmatism (magmatic margins) may accompany collapse, with salt thicknesses reaching 5 km and volcanic piles 1525 km. This mechanism of rapid salt deposition allows mega‐salt basins to be deposited on end‐rift unconformities at global sea level, as opposed to deep, air‐filled sub‐sea depressions. Outer marginal collapse is ‘post‐rift’ from the perspective of faulting in the continental crust, but of tectonic, not of thermal, origin. Although this appears to be a global process, the Gulf of Mexico is an excellent example because regional stratigraphic and structural relations indicate that the pre‐salt rift basin was filled to sea level by syn‐rift strata, which helps to calibrate the rate and magnitude of collapse. We examine the role of outer marginal detachments in the formation of East India, southern Brazil and the Gulf of Mexico, and how outer marginal collapse can migrate diachronously along strike, much like the onset of seafloor spreading. We suggest that backstripping estimates of lithospheric thinning (beta factor) at outer continental margins may be excessive because they probably attribute marginal collapse to thermal subsidence.  相似文献   

16.
Geophysical data from the Amazon Cone Experiment are used to determine the structure and evolution of the French Guiana and Northeast Brazil continental margin, and to better understand the origin and development of along-margin segmentation. A 427-km-long combined multichannel reflection and wide-angle refraction seismic profile acquired across the southern French Guiana margin is interpreted, where plate reconstructions suggest a rift-type setting.
The resulting model shows a crustal structure in which 35–37-km-thick pre-rift continental crust is thinned by a factor of 6.4 over a distance of ∼70  km associated with continental break-up and the initiation and establishment of seafloor spreading. The ocean–continent boundary is a transition zone up to 45  km in width, in which the two-layered oceanic-type crustal structure develops. Although relatively thin at 3.5–5.0  km, such thin oceanic crust appears characteristic of the margin as a whole.
There is no evidence of rift-related magmatism, either as seaward-dipping sequences in the reflection data or as a high velocity region in the lower crust in the P -wave velocity model, and as a such the margin is identified as non-volcanic in type. However, there is also no evidence of the rotated fault block and graben structures characteristic of rifted margins. Consequently, the thin oceanic crust, the rapidity of continental crustal thinning and the absence of characteristic rift-related structures leads to the conclusion that the southern French Guiana margin has instead developed in an oblique rift setting, in which transform motion also played a significant role in the evolution of the resulting crustal structure and along-margin segmentation in structural style.  相似文献   

17.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

18.
The Canary Islands swell: a coherence analysis of bathymetry and gravity   总被引:2,自引:0,他引:2  
The Canary Archipelago is an intraplate volcanic chain, located near the West African continental margin, emplaced on old oceanic lithosphere of Jurassic age, with an extended volcanic activity since Middle Miocene. The adjacent seafloor does not show the broad oceanic swell usually observed in hotspot-generated oceanic islands. However, the observation of a noticeable depth anomaly in the basement west of the Canaries might indicate that the swell is masked by a thick sedimentary cover and the influence of the Canarian volcanism. We use a spectral approach, based on coherence analysis, to determine the swell and its compensation mechanism. The coherence between gravity and topography indicates that the swell is caused by a subsurface load correlated with the surface volcanic load. The residual gravity/geoid anomaly indicates that the subsurface load extends 600 km SSW and 800 km N and NNE of the islands. We used computed depth anomalies from available deep seismic profiles to constrain the extent and amplitude of the basement uplift caused by a relatively low-density anomaly within the lithospheric mantle, and coherence analysis to constrain the elastic thickness of the lithosphere ( Te ) and the compensation depth of the swell. Depth anomalies and coherence are well simulated with Te =28–36 km, compensation depth of 40–65 km, and a negative density contrast within the lithosphere of ∼33 kg m−3. The density contrast corresponds to a temperature increment of ∼325°C, which we interpret to be partially maintained by a low-viscosity convective layer in the lowermost lithosphere, and which probably involves the shallower parts of the asthenosphere. This interpretation does not require a significant rejuvenation of the mechanical properties of the lithosphere.  相似文献   

19.
The Southern Andes differ significantly from the Central Andes with respect to topography and crustal structures and are, from a geophysical point of view, less well known. In order to provide insight into the along-strike segmentation of the Andean mountain belt, an integrated 3-D density model was developed for the area between latitudes 36°S and 42°S. The model is based on geophysical and geological data acquired in the region over the past years and was constructed using forward density modelling. In general, the gravity field of the South American margin is characterized by a relatively continuous positive anomaly along the coastline and the forearc region, and by negative anomalies along the trench and the volcanic arc. However, in the forearc region of the central part of the study area, located just to the south of the epicentre of the largest ever recorded earthquake (Valdivia, 1960), the trench-parallel positive anomaly is disrupted. The forearc gravity anomaly differences thus allow the study area to be divided into three segments, the northern Arauco-Lonquimay, the middle Valdivia-Liquiñe, and the southern Bahía-Mansa-Osorno segment, which are also evident in geology. In the proposed model, the observed negative gravity anomaly in the middle segment is reproduced by an approximately 5 km greater depth to the top of the slab beneath the forearc region. The depth to the slab is, however, dependent upon the density of the upper plate structures. Therefore, both the upper and lower plates and their interaction have a significant impact on the subduction-zone gravity field.  相似文献   

20.
Summary Peake and Freen Deeps are elongate structures some 30 nautical miles long by 7 miles wide situated near 43° N 20° W on the lower flanks of the Mid-Atlantic Ridge. Seismic reflection records show that underneath about 400 fm of layered sediment the bedrock lies at a depth greater than 3600 fm in Peake Deep and 3300 fm in Freen Deep; the surrounding seafloor is at about 2100 fm. Freen Deep is the eastern end of King's Trough, a flat floored feature some 400 fms deeper than the adjacent seafloor. The Trough extends 220 miles west-north-westwards towards the crest of the Mid-Atlantic Ridge. The area is aseismic and heat flow is normal; there is no displacement of the crest of the mid-ocean ridge on the projected line of King's Trough. Gravity and magnetic surveys have been made. With minor exceptions, magnetic anomalies are not due to bodies elongated parallel with the structure, which, therefore, cannot be a volcanic collapse caldera. Seismic refraction results in the Peake-Freen area show that the crust is not thinned under the deeps although the Moho may be depressed by 2 km. Bouguer anomalies also suggest that the Moho is flat and does not rise to compensate the deeps. Models consistent with gravity and seismic information suggest there is a dense block in the upper mantle under the area. Since no reason to ascribe the origin of the structure to tear faulting has yet been acquired, it is interpreted in terms of over thrusting perpendicular to the deeps, followed by inversion of the lower part of the thickened basaltic crust to eclogite, and its subsequent sinking into the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号