首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
《Gondwana Research》2002,5(1):133-146
Trace, REE, Sr and Nd isotopic studies have been carried out on gabbro-pyroxenite intrusives (Rb-Sr isochron age ∼ 1619±38 Ma; Sri ∼ 0.70552±0.00002) of the Dalma volcanic belt from eastern Indian craton. Primitive mantle-normalised trace element patterns show a general depletion of high field strength elements and LREE but more or less flat pattern in most compatible elements. Chondrite-normalised REE plots show depleted LREE-flat HREE patterns [(SLREE/SHREE)N < 1, (Ce/Yb)N < 1] strikingly similar to the komatiitic and tholeiitic lavas from this belt. Nd isotopic data with mean fSm/Nd ∼ +0.2704 and high eNd (mean +7.8) values indicate that the source of these rocks was depleted in LREE for considerably long time. When plotted on the global eNd evolution path for the upper mantle the Dalma intrusives fall exactly around the depleted MORB-type mantle at 1.6 Ga.Enrichment in some LILE like Rb, Ba, Th is found both in the tholeiitic lavas and the residues indicating them to be source characteristics. Positive DNb values of most of the mafic-ultramafic units (including komatiitic lavas) of this belt indicate that they originated from a mantle plume with thick envelope of hot upper mantle producing MORB-like depleted komatiites, tholeiites and intrusives. The mid-Proterozoic plume eventually rifted the continent above, forming a rapidly subsiding basin which was subsequently collapsed and compressed. The plume also caused widespread thermal events recorded in charnockitisation, migmatisation and granitisation around 1.6 Ga. This was possibly part of a global ∼1.6 Ga thermal anomaly which affected the pre-existing large landmass comprising atleast Antarctica, Australia and India (Mawson continent?).  相似文献   

2.
Several volumetrically minor \(\sim \)2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U–Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U–Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high \(\hbox {SiO}_{2}\) and \(\hbox {K}_{2}\hbox {O}\), very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the \(\sim \)3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the \(\sim \)2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.  相似文献   

3.
The Ungava orogen of northern Québec is one of the best preserved Proterozoic mobile belts of the world, recording > 200 Ma of plate divergence and convergence. Voluminous magmatism associated with rifting of the Superior Province basement ≈2.04 Ga resulted in the development of a volcanic rift margin sequence and an ocean basin. Four distinct mafic magma suites were erupted: (1) continental basalts (Eskimo Formation, western and central Povungnituk Group) with moderate to high Zr/Nb and negative Nb anomalies which have interacted with the continental crust (εNd(2.0 Ga)) from −7.4); (2) mafic lavas from the Flaherty Formation, eastern Povungnituk Group and some Watts Group lavas associated with passive margin rifting, having slightly enriched isotopic signatures (εNd(2.0 Ga) = +2.7 to +4.4) compared to the contemporaneous depleted mantle, high (Nb/Y)n and low Zr/Nb ratios (≈4.4 and ≈8.9, respectively); (3) a highly alkaline OIB-like suite (εNd(2.0 Ga) = +2.3 to +3.2, (Nb/Y)n> 12) within the Povungnituk Group composed of nephelinites, basanites and phonolites; and (4) depleted Mg-rich basalts and komatiitic basalts (εNd(2.0 Ga) ≈ + 4.5 to + 5.5) with trace-element characteristics of N-MORB, but with higher Fe and lower Al than primitive MORB (Chukotat Group, Ottawa Islands and some Watts Group samples). The ocean basin into which these lavas were erupted was subsequently destroyed during subduction between ≈1.90 and ≈1.83 Ga, resulting in the development a magmatic arc (Narsajuaq terrane and Parent Group).

The Ungava magmas provide a unique window into the mantle at 2.0 Ga. The chemical and isotopic similarity of these Proterozoic magmas to modern-day magmas provides strong evidence that the interplay between depleted mantle, OIB mantle and sub-continental mantle during the Proterozoic was comparable to that of the modern Earth.  相似文献   


4.
The Singhbhum Mobile Belt (SMB) of the eastern Indian shield represents a roughly east-west-trending arcuate belt of folded supracrustals overlying the granite-greenstone basement of the Singhbhum-Orissa Craton along its northern, eastern and western margins and is bounded by the Chotanagpur Gneissic Complex to further north. The radiometric ages of the basement Singhbhum and equivalent granites and the intrusive anorogenic Mayurbhanj granite pluton constrain the time of evolution of this mobile belt between 3.12 and 3.09 Ga. Hence, the SMB supracrustals also known as Singhbhum Group, is late Mesoarchaean in age and not Proterozoic as thought earlier. The evolution of the SMB was followed by emplacement of some major basic igneous rocks within or adjacent to the supracrustals. These include Simlipal volcanics at >3.09 Ga on the SMB, Mayurbhanj gabbro along with Mayurbhanj granite at 3.09 Ga along the marginal part of the craton near the SMB, and the Dalma volcanics on the SMB along with the Dhanjori volcanics adjacent to SMB at 2.80 Ga. The 2.80 Ga old basic volcanics is also associated with emplacement of some small granite plutons occurring along the marginal part of the craton, one of them, the Tamperkola granite intrudes the SMB. The >3.09 Ga onward igneous activities along the marginal part of Singhbhum-Orissa Craton took place essentially under anorogenic tectonic setting before being affected by a major metamorphism at 2.50 Ga, which is recorded on the Dalma volcanics and on some small granite pluton occurs along the marginal part of the craton. The Jagannathpur and stratigraphically equivalent Malangtoli volcanics, occurring within the Singhbhum-Orissa Craton at the west, were erupted at 2.25 Ga. The boundary between the SMB supracrustals and the Singhbhum-Orissa Craton is demarked by a prominent shear zone known as the Singhbhum Shear Zone, which shows multiple reactivation, the oldest being at 3.09 Ga, followed by subsequent reactivation during Palaeo- and Mesoproterozoic periods at 2.2, 1.8, 1.6-1.5, 1.4 and 1.0 Ga respectively. The Singhbhum Group and the adjacent Chotanagpur Gneissic Complex appear to have evolved from a near shore syn-rift and a distal post-rift stable shelf sedimentary assemblages respectively, which were deposited without any stratigraphic break in a marine basin existed in the present north of the Singhbhum-Orissa Craton. Both of these assemblages were deformed and metamorphosed together during Proterozoic at 2.5 to >2.3 Ga, 1.6 Ga and 1.0 Ga.  相似文献   

5.
Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma, Sri ∼ 0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; (ΣHREE)N ∼ 2–3 times chondrite, (Gd/Yb)N ∼ 1). The εNd(t) values vary from +1.23 to -3.27 whereas δ18O values vary from +3.16‰ to +5.29‰ (average +3.97‰±0.75‰) which is lighter than the average mantle value. Isotopic, trace and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised by the fluid (± silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted, variable εNd, low Sri(0.702) and low δ18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the granitic crust which possibly originated due to the same thermal pulse.  相似文献   

6.
Two major swarms of early Proterozoic (ca. 2.1 Ga) basic dykes occur within the Archaean craton of southern West Greenland. One swarm comprises ophitic and sub-ophitic tholeiitic dolerites, while the other (the BN dyke swarm) constitutes mainly norites in which pyroxenes and olivine are enclosed by plagioclase oikocrysts. The close geochemical similarity between a quenched norite and the coarser-grained varieties indicates that the composition of the latter type has not been significantly modified by crystal accumulation. The BN dykes are geochemically distinctive, most having high MgO (ca. 16%), Cr and Ni contents in conjunction with relatively high SiO2, light rare-earth (REE) and large ion lithophile (LIL) element concentrations. The texture, mineral chemistry and petrochemistry of the quenched noritic dyke all bear strong resemblances to those features in modern boninitic lavas. The BN dykes also correspond to proposed parental liquids of the Bushveld Complex and other major layered basic igneous intrusions. The two dyke swarms are petrogenetically distinct. The tholeiitic dolerites were derived from a relatively undepleted, primordial mantle while the noritic dykes originated from a metasomatized harzburgitic source. The wide-spread distribution of similar Proterozoic intrusions suggests crustal underplating by harzburgitic mantle on a world-wide scale at this time.  相似文献   

7.
Reappraisal of field relationships between the different lithological ensembles supported by available geochronological data, and taking due note of the tectono-metamorphic, magmatic and sedimentation history helped to build up a coherent crustal evolutionary history of the Singhbhum Archaean craton, eastern India. The evolution of the earliest sialic crust, as the isotope ages suggest, was around 3700 Ma or even earlier. Deposition of the oldest, dominantly metasedimentary supracrustals, the Older Metamorphic Group (OMG), was initiated at around 3380 Ma, i.e. after a gap of about 320 million years. The closing of OMG basins synchronously with the emplacement of a granitoid phase was at ca.3285 Ma. No other fabric-forming ductile deformation and metamorphism associated with the development of foliation and mineral lineation is known in the rocks of the Singhbhum Archaean craton subsequent to this event. Formation of the succeeding geological ensembles including the deposition of BIF-bearing Iron Ore Group (IOG) and the emplacement of the post-IOG granitoids at ca.3100 Ma can be described as ??lsnon-orogenic?? event taking place during the phase of tectonic quiescence. Supracrustals like the Dhanjori and Simlipal mafic volcanics with intercalated beds of arenite evolved later during the phase of Plume outburst at around 2800 Ma. The end-Archaean intrusion of Newer Dolerite dykes in conjugate sets and the deposition of Kolhan Group in an N-S oriented basin during an E-W stress system mark the culmination of the Archaean crust-building activity in the Singhbhum Archaean craton.  相似文献   

8.
Rare Archaean light rare earth element (LREE)-enriched mafic rocks derived from a strongly refractory mantle source show a range of features in common with modern boninites. These Archaean second-stage melts are divided into at least two distinct groups—Whundo-type and Whitney-type. Whundo-type rocks are most like modern boninites in terms of their composition and association with tholeiitic to calc-alkaline mafic to intermediate volcanics. Small compositional differences compared to modern boninites, including higher Al2O3 and heavy REE (HREE), probably reflect secular changes in mantle temperatures and a more garnet-rich residual source. Whundo-type rocks are known from 3.12 and 2.8 Ga assemblages and are true Archaean analogues of modern boninites. Whitney-type rocks occur throughout the Archaean, as far back as ca. 3.8 Ga, and are closely associated with ultramafic magmatism including komatiites, in an affiliation unlike that of modern subduction zones. They are characterised by very high Al2O3 and HREE concentrations, and their extremely depleted compositions require a source which at some stage was more garnet-rich than the source for either modern boninites or Whundo-type second-stage melts. Low La/Yb and La/Gd ratios compared to Whundo-type rocks and modern boninites either reflect very weak subduction-related metasomatism of the mantle source or very limited crustal assimilation by a refractory-mantle derived melt. Regardless, the petrogenesis of the Whitney-type rocks appears either directly or indirectly related to plume magmatism. If Whitney-type rocks have a boninitic petrogenesis then a plume related model similar to that proposed for the modern Tongan high-Ca boninites might apply, but with uniquely Archaean source compositions and source enrichment processes. Second-stage melts from Barberton (S. Africa –3.5 Ga) and ca. 3.0 Ga rocks from the central Pilbara (Australia) have features in common with both Whundo- and Whitney-types, but appear more closely related to the Whitney-type. Subduction zone processes essentially the same as those that produce modern boninites have operated since at least ~3.12 Ga, while a uniquely Archaean boninite-forming process, involving more buoyant oceanic plates and very inefficient mantle-source enrichment, may have occurred before then.  相似文献   

9.
The mafic dyke swarms are important feature of the Proterozoic and in parts of some stabilised cratonic areas. The early Proterozoic Bundelkhand massif of Central India is extensively intruded by suites of NW-SE and NE-SW trending mafic and ultramafic dykes. These dykes are mostly dolerites with subordinate pyroxenite, or lamproites, moreover, geochemical signatures of the two compositional types are different for the NW-SE and NE-SW trending suites. 40Ar/39Ar age determinations of the dolerite dykes suggest two phases of dyke activity at c.2150Ma and c.2000 Ma in this region. The dolerites are typically tholeiites and quartz normative types represented by Group I and Group II, whilst the ultramafics are komatiite or basaltic komatiite in composition and show an olivine-normative character. Rare earth element (REE) patterns show some enrichment of LREE and exhibit both positive and negative Eu anomalies. Most of the tholeiites display incompatible elements patterns indicative of an enriched mantle source, whilst those of the ultramafics indicate a depleted source. The 2 Ga event is a global event and well documented in various parts of Singhbhum, Aravalli terrane, Tamilnadu, Andhra Pradesh and Kerala regions of Indian Peninsular Shield and many parts of globe. The genesis of these dyke swarms clearly constitutes a major thermal event affecting the Earth's mantle during that period.  相似文献   

10.
Nikolay Bonev  Grard Stampfli 《Lithos》2008,100(1-4):210-233
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive Ndi values in the range of + 4.87 to + 6.09, approaching the lower limit of MORB-like source, and relatively high (207Pb/204Pb)i (15.57–15.663) at low (206Pb/204Pb)i (18.13–18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low Ndi value of − 2.61 and is slightly more Pb radiogenic (207Pb/204Pb)i (15.64) and (206Pb/204Pb)i (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc–accretionary complex related to the southward subduction of the Meliata–Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early–Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc–trench system collided with the Rhodope in the Late Jurassic times.  相似文献   

11.
The Archaean cratonic nuclei of the continents are important as they contain the most significant evidences for the evolution of Earth e.g. the greenstone sequences. In the Indian Shield, one of the important cratons is the Singhbhum craton, where nearly 95% of the Indian chromite deposits and only PGE deposits are located which are hosted within Mesoarchaean ultramafic-mafic rock sequences. The ultramafic units occur as sill like intrusions within the Iron Ore Group (IOG) greenstone belts and often associated with gabbroic intrusions. In the Nuasahi and Sukinda mining districts of these occurrences, detailed petrological, geochemical and isotopic studies have been carried out in the last decades. Petrological and geochemical studies indicate a supra-subduction zone (SSZ) tectonic settings in Archaean for the origin of these ultramafic-mafic sequences. The Os isotopic and platinum group element (PGE) geochemical studies of chromites from the two mining districts indicate presence of a subchondritic source mantle domain beneath and within the Singhbhum craton similar to the Zimbabwean craton of southern African continent. The Os model age calculation indicates melt extraction from a subcontinental lithospheric mantle (SCLM) before 3.7 Ga which is similar to the other ancient cratons. As a whole the study supports the premise that India was part of the African continent in pre-Gondwana times and even in early Archaean and suggest possible amalgamation and building up of a supercontinent during late Archaean. However, in comparison with other occurrences, the Singhbhum craton of the Indian Shield and the Zimbabwean craton in southern Africa are characterized by the presence of subchondritic lithospheric mantle domains within the SCLM, which were developed prior to 3.7 Ga.  相似文献   

12.
The Archean eastern Dharwar craton is transacted by at least four major Proterozoic mafic dyke swarms. We present geochemical data for the ~2.21–2.22 Ga N-S to NNW-SSE trending Kunigal mafic dyke swarm of the eastern Dharwar craton to address its petrogenesis and formation of large igneous province as well as spatial link to supercontinent history. It has a strike span of about 200 km; one dyke of this swarm runs ~300 km along the western margin of the Closepet granite. Texture and mineral compositions classify them as dolerite and olivine dolerite. They show compositions of high-iron tholeiites, high-magnesian tholeiites or picrites. Geochemical characteristics of the sampled dykes suggest their co-genetic nature and show variation from primitive (Mg#; as high as ~76) to evolved (differentiated) nature. Although geochemical characteristics indicate possibility of minor crustal contamination, they show their derivation from an uncontaminated mantle melt. These mafic dykes are probably evolved from a sub-alkaline basaltic magma generated by ~20 % batch melting of a depleted lherzolite mantle source and about 15–30 % olivine fractionation. Paleoproterozoic (~2.21–2.22 Ga) mafic magmatism is recognized globally as dyke swarms or gabbroic sill complexes in the Superior, Slave, North Atlantic, Fennoscandian and Pilbara cratons. Possible Paleoproterozoic Dharwar–Superior–North-Atlantic–Slave correlations are constrained with implications for the configuration of supercraton Superia.  相似文献   

13.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   

14.
A number of Paleoproterozoic mafic dykes are reported to intrude volcano-sedimentary sequences of the Mahakoshal supracrustal belt. They are medium to coarse-grained and mostly trend in ENE-WSW to E-W. Petrographically they are metadolerite and metabasite. Geochemical compositions classify them as sub-alkaline basalts to andesites with high-iron tholeiitic nature. Both groups, i.e. metabasites and metadolerites, show distinct geochemical characteristics; high-field strength elements are relatively higher in metadolerites than metabasites. This suggests their derivation from different mantle melts. Chemistry does not support any possibility of crustal contamination. Trace element modeling advocates that metabasite dykes are derived from a melt originated through ∼20% melting of a depleted mantle source, whereas metadolerite dykes are probably derived from a tholeiitic magma generated through <10% melting of a enriched mantle source. Chemistry also reveals that the studied samples are derived from deep mantle sources. HFSE based discrimination diagrams suggest that metabasite dykes are emplaced in tectonic environment similar to the N-type mid-oceanic ridge basalts (N-MORB) and the metadolerite dykes exhibit tectonic setting observed for the within-plate basalts. These inferences show agreement with the available tectonic model presented for the Mahakoshal supracrustal belt. The Chitrangi region experienced N-MORB type mafic magmatism around 2.5 Ga (metabasite dykes) and within-plate mafic magmatism around 1.5–1.8 Ga (metadolerite dykes and probably other alkaline and carbonatite magmatic rocks).  相似文献   

15.
Paleo-Mesoproterozoic (1.0-2.4 Ga) north Singhbhum mobile belt (NSMB) is one of the prominent polymetallic mineral belt within the Singhbhum crustal province of eastern India lying between Chotanagpur gneissic complex (CGC) in the north and the Archaean Singhbhum craton (>2.4 Ga) in the south. The study area is located along the northern fringe of Dalma volcano-sedimentary basin. Lithological variations, structure, metamorphism and tectonic setting indicate good prospect for regional gold exploration within this area.Extensive work by Geological Survey of India (GSI) within this basin reveals gold occurrences with its concentrations ranging from 0.1 to 4 ppm within the carbonaceous cherty quartzite. Gold mineralization within the area has been reported to be associated with quartz ± quartz carbonate vein either as disseminated gold or as refractory gold within the sulfides. A detailed study on the occurrence of refractory gold associated with carbonaceous cherty quartzite has not been carried out by any of the previous workers. The present work report the occurrence of refractory gold associated with sulfides within the carbonaceous host rocks. Detailed petrographic studies of the carbonaceous host rock reveal the presence of sulfides such as pyrrhotite, pyrite, chalcopyrite, arsenopyrite. EPMA studies of the host rocks indicate the presence of invisible gold within the sulfides varying in concentration from 100 to 1000 ppm. Total organic carbon (TOC), high resolution X-ray diffraction (HR-XRD) and Fourier transform infrared spectrometry (FTIR) analysis show the presence of organic carbon within the samples. Presence of organic carbon facilitates reducing environment required for gold mineralization within carbonaceous host rock in the study area.  相似文献   

16.
Major and trace element data for ultramafic and mafic metavolcanic rocks from the volcano-sedimentary belts at Holenarsipur and Shigegudda are presented. Although the Holenarsipur belt has been regarded as representing two stratigraphic groups separated widely in time — the Sargur (pre-3,4 Ga) and Dharwar (post-3,4 Ga) Groups — and Shigegudda is clearly younger than the 3.4 Ga gneisses, representative samples from all three suites are part of the same geochemical population. This comprises komatiitic to tholeiitic lavas which are genetically related by progressive fractional crystallization of olivine + pyroxene ± Cr-spinel. Some of the variability in the high-MgO rocks may reflect differential, partial melting of the mantle. There are two sub-populations, separable into light rare-earth-enriched and light rare-earth-depleted, which may reflect different depths of melting of compositionally homogeneous mantle. Many of the geochemical characteristics of the population bear a strong resemblance to modern basic volcanics formed in destructive plate margin environments.  相似文献   

17.
The Bastar craton in central India, surrounded by cratonic blocks and Paleoproterozoic to Neoproterozoic orogenic belts, is a window to investigate the Archean-Paleoproterozoic crustal evolution and tectonic processes. Here we propose a new tectonic classification of the craton into the Western Bastar Craton (WBC), Eastern Bastar Craton (EBC), and the intervening Central Bastar Orogen (CBO). We present petrologic, geochemical and zircon U-Pb, REE and Lu-Hf data from a suite of rocks from the CBO and along the eastern margin of the WBC Including: (1) volcanic successions comprising meta-andesite and fine-grained amphibolite, representing arc-related volcanics along a convergent margin; (2) ferruginous sandstone, in association with rhyolite, representing a volcano-sedimentary succession, deposited in an active trench; and (3) metamorphosed mafic-ultramafic suite including gabbro, pyroxenite and dunite invaded by trondhjemite representing the section of sub-arc mantle and arc root adjacent to a long-lasting subduction system. Petrologic studies indicate that the mafic-ultramafic suite crystallized from an island arc tholeiitic parental magma in a suprasubduction zone environment. The chondrite-normalized and primitive mantle normalized diagrams of the mafic and ultramafic rocks suggest derivation from MORB magma. The mixed characters from N-MORB to E-MORB of the studied samples are consistent with subduction modification of a MORB related magma, involving partial melting of the metasomatized mantle wedge. Our zircon U-Pb age data suggest that the cratonic nuclei was constructed as early as Paleoarchean. We present evidence for active subduction and arc magmatism through Mesoarchean to Neoarchean and early Paleoproterozoic, with the trench remaining open until at least 2.3 Ga. Two major crust building events are recognized in the Bastar craton: during Mesoarchean (recycled Paleoarchean subduction-related as well as juvenile/depleted mantle components) and Neoarchean (accretion of juvenile oceanic crust, arc magmatism including granite batholiths and related porphyry mineralization). The final cratonization occurred during latest Paleoproterozoic, followed by collisional assembly of the craton and its incorporation within the Peninsular Indian mosaic during Mesoproterozoic. In the global supercontinent context, the craton preserves the history of Ur, the earliest supercontinent, followed by the Paleo-Mesoproterozoic Columbia, as well as minor thermal imprints of the Neoproterozoic Rodinia and associated Grenvillian orogeny.  相似文献   

18.
《Gondwana Research》2001,4(3):307-318
The supracrustal rocks of the Older Metamorphic Group (OMG), consisting of metasediments and ortho-amphibolite, constitute the oldest unit in the Archaean nucleus of Singhbhum. However, there are indications that still older (3.4–3.8 Ga) crust of both sialic and mafic composition existed in this region. The OMG ortho-amphibolites were formed by partial melting of mantle with near chondritic composition ca. 3.3 Ga ago, probably as a result of plume activity. Shortly afterwards, partial melting of the underplated mafic material produced a tonalitic melt (Older Metamorphic Tonalitic Gneiss — OMTG), which intruded the OMG supracrustals and the entire suite was deformed and metamorphosed to upper amphibolite facies. Subsequent to this, melting of the OMG ortho-amphibolites and the lower crustal material of probable andesitic composition produced melts varying in composition from tonalite to granite and these intruded in different phases to produce plutons of Singhbhum Granite, Bonai Granite and Kaptipada Granite, which together form volumetrically the major part of the Archaean nucleus. The older OMG and OMTG occur as enclaves within these younger granitoids. The time difference between the emplacements of the OMTG and the early phases of younger granitic intrusion was of the order of 100–200 Ma. Thus, serial additions of juvenile material led to the formation of a stable microcontinent by 3.2 Ga. Thermally triggered stretching in this microcontinent produced basins peripheral to the present day Singhbhum Granite pluton, and in these basins the younger supracrustal rocks of the Iron Ore Group (IOG), consisting of BIF, associated argillaceous and subordinate arenaceous rocks, and mafic lavas were laid down. There is inadequate field or geochronological evidence to resolve the issue of whether the different iron ore basins were coeval or not. Meagre geochronological data suggest that some of the BIFs are older than ca. 3.1 Ga. Post-IOG activity is confined to the intrusion of mafic dyke swarms and formation of intracratonic basins, the ages of both being uncertain.  相似文献   

19.
Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.  相似文献   

20.
Ophiolite complexes, formed in a suprasubduction zone environment during Neoproterozoic time, are widely distributed in the Eastern Desert of Egypt. Their mantle sections provide important information on the origin and tectonic history of ocean basins these complexes represent. The geochemistry and mineralogy of the mantle section of the Wizer ophiolite complex, represented by serpentinites after harzburgite containing minor dunite bodies, are presented. Presence of antigorite together with the incipient alteration of chromite and absence of chlorite suggests that serpentinization occurred in the mantle wedge above a Neoproterozoic subduction zone. Wizer peridotites have a wide range of spinel compositions. Spinel Cr# [100Cr/(Cr + Al)] decrease gradually from dunite bodies (Cr# = 81–87) and their host highly depleted harzburgites (Cr# = 67–79) to the less depleted harzburgites (Cr# = 57–63). Such decreases in mantle refractory character are accompanied by higher Al and Ti contents in bulk compositions. Estimated parental melt compositions point to an equilibration with melts of boninitic composition for the dunite bodies (TiO2 = ~<0.07–0.22 wt%; Al2O3 = 9.4–10.6 wt%), boninitic-arc tholeiite for the highly depleted harzburgites (TiO2 = <0.09–0.28 wt%; Al2O3 = 11.2–14.1 wt%) and more MORB-like affinities for the less depleted harzburgites (TiO2 = ~<0.38–0.51 wt%; Al2O3 = 14.5–15.3 wt%). Estimated equilibrium melts are found in the overlying volcanic sequence, which shows a transitional MORB–island arc geochemical signature with a few boninitic samples. Enrichment of some chromites in TiO2 and identification of sulfides in highly depleted peridotites imply interaction with an impregnating melt. A two-stage partial melting/melt–rock reaction model is advocated, whereby, melting of a depleted mantle source by reaction with MORB-like melts is followed by a second stage melting by interaction with melts of IAT–boninitic affinities in a suprasubduction zone environment to generate the highly depleted harzburgites and dunite bodies. The shift from MORB to island arc/boninitic affinities within the mantle lithosphere of the Wizer ophiolite sequence suggests generation in a protoarc-forearc environment. This, together with the systematic latitudinal change in composition of ophiolitic lavas in the Central Eastern Desert (CED) of Egypt from IAT–boninitic affinities to more MORB-like signature, implies that the CED could represent a disrupted forearc-arc-backarc system above a southeast-dipping subduction zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号