首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The latest Carboniferous–Early Permian Dorud Group in the Chaman‐Saver area of eastern Alborz, Iran is more than 222 m thick and includes thick sequences of oncolitic limestone, sandy limestone, sandstones and shales. The Emarat and Ghosnavi formations of this Group are dated here as latest Gzhelian to early Sakmarian Stages. During the Asselian Stage, the sea level fell abruptly and epeirogenic episodes occurred. These events generated a broad, shallow carbonate platform suitable for the growth and diversity of smaller foraminifers in the Chaman‐Saver area which, consequently, displays faunal differences with the rest of the Alborz Mountains. Three foraminiferal biozones are proposed: Nodosinelloides potievskayae–Vervilleina bradyi Zone (latest Gzhelian), Calcitornella heathi–Nodosinelloides sp. Zone (latest Gzhelian–Asselian), and Rectogordius iranicus n. gen. n. sp.–Hemigordius schlumbergeri Zone (early Sakmarian). The new taxa described herein include: Pseudovidalina iranica n. sp., P. damghanica n. sp., Rectogordius iranicus n. gen. n. sp. and Tezaquina sp. 1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The Carboniferous succession in the Tindouf Basin of southern Morocco, North Africa, displays Mississippian to Early Pennsylvanian marine beds, followed by Pennsylvanian continental deposits. The marine beds comprise a shallow water cyclic platform sequence, dominated by shales and fine‐grained sandstones with thin but laterally persistent limestone/dolostone beds. Foraminiferal assemblages have been studied in the limestone beds in several sections from the Djebel Ouarkziz range in the northern limb of the Tindouf Syncline; they indicate that the age of the limestones range from late Asbian (late Viséan) to Krasnopolyanian (early Bashkirian). The foraminiferal assemblages are abundant and diverse, and much richer in diversity than those suggested by previous studies in the region, as well as for other areas of the western Palaeotethys. The richest assemblages are recorded in the Serpukhovian but, unusually, they contain several taxa which appear much earlier in Western European basins (in the latest Viséan). In contrast, conodont assemblages are scarce due to the shallow‐water facies, although some important taxa are recorded in the youngest limestones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The Binalud Mountains of NE Iran represent the easternmost extension of the Alborz Range. After the Mid-Cimmerian orogenic event and rapid subsidence, the deep marine sediments of the Dalichai Formation were deposited. A well-preserved section of the formation was sampled for palynological purposes. The study revealed diverse and nearly well-preserved dinoflagellate cyst assemblages. Thirty-six dinoflagellate cyst species identified lead to identification of four biozones: Cribroperidinium crispum (Late Bajocian), Dichadogonyaulax sellwoodii (Bathonian to Early Callovian), Ctenidodinium continuum (Early to Late Callovian), and Ctenidodinium tenellum (Early Oxfordian) biozones. The close similarities of dinoflagellate cyst assemblages between Binalud Mountains, NE Iran, with those of Alborz Mountains (Northern Iran) during Middle Jurassic confirm the connection between two sedimentary basins during this time in Iran. Meanwhile, this biozonation corresponds largely to that established in Northwest Europe and reveals the marine connection between NE and North of Iran with Northwest Europe and the Northwestern Tethys during the Late Bajocian to Early Oxfordian.  相似文献   

4.
Calcareous microflora occur commonly in the early Serpukhovian (late Mississippian) rocks from the Guadiato Area (southwestern Spain) despite the fact that this area contains mostly siliciclastic sediments. The microflora recorded in the carbonate beds is regarded as representative of both relatively deep‐water and shallow‐water facies and can be compared with the slope and shelf facies environments distinguished in the Guadiato Area. Up to 45 algal taxa have been identified in the carbonate beds, of which 26 taxa occur in the relatively deep‐water assemblages, whereas the shallow‐water assemblages are composed of up to 43 taxa. The entire algal assemblage is dominated by calcifoliids, common cyanobacteria and incertae sedis, but the shallow‐water assemblages contain more commonly dasyclads, red algae and aoujgaliids. Most of these taxa are present, but poorly known, in other Serpukhovian carbonate platforms in the western Palaeotethys. Some algae (Hortonella uttingii, Kamaenella tenuis and Koninckopora inflata), usually regarded as being restricted to the Viséan, have been found in Serpukhovian rocks in the Guadiato Area, and also in Algeria, thus their stratigraphic ranges might be extended up to the Serpukhovian. Other important taxa include: Archaeolithophyllum, Cabrieropora, Calcifolium, Falsocalcifolium, Fourstonella, Frustulata, Kulikia, Neoprincipia and ‘Windsoporella’, which are exceptionally recorded in Serpukhovian rocks, or not recorded at all, because they are typically recorded in the Pennsylvanian (cf. Clavaporella), although some of them show earlier occurrences in Viséan rocks (Claracrusta, Paraepimastopora and Sparaphralysia). Some of the algal taxa can be considered as potential regional markers for the Serpukhovian, such as Archaeolithophyllum, cf. Clavaporella, Frustulata and Girvanella (?) sp. The algal assemblages found in the Guadiato Area show the greatest similarities with those in the Béchar‐Mézarif (Algeria), Pyrenees and Montagne Noire (southern France). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Analysis of Mississippian coral assemblages from the Khenifra region of Central Morocco together with data from foraminiferal/algal microfossils has established new age dating of 5 localities within the Azrou–Khenifra Basin: Souk El Had and Sidi Lamine, where corals occur mainly in biostromes protected by oolitic shoals, Tabainout, where corals have been recorded in different environments related to microbial mounds, Alhajra Almatkouba, where corals occur in biostromal reworked beds and Tiouinine, where corals occur in a well structured, fringing reef. This study demonstrates the presence of richer more diverse coral assemblages than previously recorded, in a variety of environmental settings. These coral assemblages strengthen correlations with the Adarouch area in the NE part of the Azrou–Khenifra Basin. It is emphasised that in the upper Viséan there are close similarities with rugose coral assemblages in other parts of the Western Palaeotethys including North Africa, SW Spain and NW Europe, and that all belong to the same biogeographic province.  相似文献   

6.
The Viséan (Carboniferous) sedimentary succession of the basinal Kulm facies (Rhenish Mountains) was investigated in detail in order to achieve a high‐resolution stratigraphic subdivision and correlation. Additionally, the ranges of fossil index taxa (ammonoids), fossil marker beds, volcaniclastic horizons and sedimentary features (e.g. colour changes) were integrated in the correlation. As a result, a comprehensive database was compiled, which contains 190 stratigraphic events of the Viséan interval of this area. Several sections are almost completely composed of shales, which are regarded to represent a slow but constant basinal background sedimentation of the Kulm facies. The thickness of lithological homogeneous sections thus indicates an approximately linear record of time and the average thicknesses of biozones and positions of stratigraphic events can easily be calculated from the compiled database. The result is an approximately time‐linear biostratigraphic scale for the Viséan Stage of the Kulm Basin. Given a numerical length of the Viséan Stage of ca. 19 Ma, 190 stratigraphic events give a mean resolution of 100 000 years. This is unique in Palaeozoic stratigraphy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Three Upper Viséan to Serpukhovian limestone formations from the Adarouch region (central Morocco), North Africa, have been dated precisely using foraminiferans and calcareous algae. The lower and middle part of the oldest formation, the Tizra Formation (Fm), is assigned to the latest Asbian (upper Cf6γ Subzone), and its upper part to the Early Brigantian (lower Cf6δ Subzone). The topmost beds of this formation are assigned to the Late Brigantian (upper Cf6δ Subzone). The lower part of the succeeding Mouarhaz Fm is also assigned to the Late Brigantian (upper Cf6δ Subzone). The Akerchi Fm is younger than the other formations within the region, ranging from the latest Brigantian (uppermost Cf6δ Subzone) up to the Serpukhovian (E1–E2). The base of the Serpukhovian (Pendleian Substage, E1) is repositioned, to coincide with the appearance of a suite of foraminiferans including Archaediscus at tenuis stage, Endothyranopsis plana, Eostaffella pseudostruvei, Loeblichia ukrainica, Loeblichia aff. minima and Biseriella? sp. 1. The upper Serpukhovian (Arnsbergian Substage, E2) is marked by the first appearance of Eostaffellina ex. gr. paraprotvae and Globoomphalotis aff. pseudosamarica. The biostratigraphical scheme used for the reassessment of the foraminiferal zones and subzones in the Adarouch area closely compares with that for the British succession in northern England (Pennine Region), where the stratotypes of the Upper Viséan (Asbian and Brigantian) and Early Serpukhovian (Pendleian) substages are located. Thus, a succession equivalent to an interval from the Melmerby Scar Limestone to the Great (or Little) Limestone is recognized. These assemblages are also compared to other foraminiferal zones proposed in other regions of Morocco. Several foraminiferans have been identified that are proposed as potential Serpukhovian markers for other basins in Western Europe, and compared to sequences in Russia and the Donets Basin, Ukraine. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A detailed study of foraminiferal assemblages recorded in limestones from northern England in the Stainmore Trough and Alston Block permits their assignment to different European substages than in previous studies. Comparisons with foraminiferal assemblages, mostly from Russia, allow the biozonations to be correlated with the Viséan, Serpukhovian and Bashkirian international stages, as well as with the Russian (and Ukrainian) substages for the Serpukhovian (Tarussian, Steshevian, Protvian and Zapaltyubian). The Scar Limestone and Five Yard Limestone Members are assigned to the Tarussian and, thus, represent the lowermost part of the formal Serpukhovian Stage. This new correlation coincides closely with the first occurrence of the conodont Lochriea ziegleri from levels equivalent to the Single Post Limestone that could potentially form the revised base for the Serpukhovian. The Three Yard Limestone Member is correlated with the base of the Steshevian substage which also includes the Four Fathom Limestone Member, Great Limestone Member and Little Limestone. The base of the Protvian is considered to lie within the Crag Limestone, whereas the Rookhope Shell Band contains foraminiferal assemblages more typical of the Zapaltyubian in the Ukraine and Chernyshevkian in the Urals. Assemblages of the Upper Fell Top Limestone and Grindstone/Botany Limestones contain foraminiferal species that have been used for the recognition of the Bashkirian elsewhere. There is no other fossil group which allows the calibration of those foraminiferal assemblages, because ammonoids are virtually absent in the shallow‐water cyclothemic successions and conodonts have not been studied in detail in this region. The Mid‐Carboniferous boundary and the Voznessenian substage might be reasonably located below the Upper Fell Top Limestone. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The biostratigraphy and sedimentological evolution of the Tournaisian–Viséan (T–V) transitional strata in South China (Guangxi) have been investigated. The sediments were deposited on a carbonate platform and in slope and basinal environments. In the T–V transitional strata, six foraminiferal associations have been distinguished which allow correlation between the shallow and deep water deposits. A careful examination of the evolutionary stages of the foraminifer Eoparastaffella provides a more accurate criterion for the definition of the T–V boundary, but does not significantly modify the historical one. The distinction of two morphotypes is based on the elevation of the last whorl and the peripheral outline. Tournaisian specimens of Eoparastaffella have a well rounded periphery (morphotype 1) contrasting with the subangular periphery of younger Viséan specimens (morphotype 2). A coefficient can be deduced from simple biometric measurements for more precisely defining the T–V boundary. The sequence stratigraphy of the T–V strata in South China has been reconstructed by combining biostratigraphical and sedimentological data. It allowed the correlation of the T–V transitional strata between the platform area and the slope and basinal locations. Late Tournaisian strata were deposited during a highstand systems tract. Near the end of the Tournaisian, a major drop in relative sea-level led to the development of an unconformity in the platform area. Lowstand deposits formed during latest Tournaisian time in the basin where a detailed biostratigraphic framework has been devised. Sediments deposited during the ensuing transgressive systems tract overlie the late Tournaisian highstand sediments in the platform area and the latest Tournaisian lowstand deposits in the basin. A major drop in relative sea-level near the end of the Tournaisian has been recognized worldwide. Therefore, the possibility of using the sequence stratigraphy of the T–V strata in South China for worldwide correlations should be investigated. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
This work describes the ammonite and benthic foraminiferal assemblages recorded across the Aalenian–Bajocian boundary of the Serra da Boa Viagem II section, located about 6 km to the east of the Bajocian GSSP (Murtinheira, Portugal), and calibrated to the standard ammonite zonation previously established for the Lusitanian Basin. A total of 220 ammonite specimens referred to 30 fossiliferous levels were collected and identified throughout the section, enabling the recognition of the Concavum Zone (Concavum and Limitatum subzones) of the upper Aalenian, and the Discites Zone of the lower Bajocian. A total of 2356 foraminifers were obtained from the 16 samples collected along the section, corresponding to 4 suborders, 8 families, 16 genera and 44 species. The occurrence of Lenticulina quenstedti (Gümbel) has enabled the recognition of the Lenticulina quenstedti Zone, ranging from the Bradfordensis Zone (middle Aalenian) to the lower Discites Zone (lower Bajocian). The first record of Ramulina spandeli Paalzow, whose occurrence, up to now, was limited in the Lusitanian Basin to the Murtinheira section (the Bajocian GSSP), highlights the usefulness of the Ramulina spandeli Zone, with its lower boundary referred to the lower Discites Zone (lower Bajocian). Other bioevents displaying local, basinal or regional biostratigraphic interest have also been identified. The benthic foraminiferal record here presented, accurately calibrated with the ammonite record, aims at contributing to support the recognition of the Lenticulina quenstedti Zone and the Ramulina spandeli Zone as formal biostratigraphic units integrating the biostratigraphic scale based on benthic foraminifers for the Aalenian–Bajocian boundary in the Lusitanian Basin (Portugal). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The investigation of the exposed middle Miocene strata from Wadi Sudr yielded well-preserved ostracod carapaces. Detailed taxonomic and paleontological studies led to the recognition of 36 ostracod species belonging to 25 genera, 4 species of them were considered new which fully described. Three assemblage biozones were recorded as follows: Actinocythereis spinosa–Actinocythereis hystrix zone, Chrysocythere cataphracta muricata-Cytheretta africana zone, and Disopontocypris schweijeri-Bythocypris tripolensis zone. The recorded biozones were calibrated with the previously studied middle Miocene planktonic foraminiferal biozones on the same samples and also correlated with the Miocene ostracod biozones from the neighboring countries. Our ostracod assemblages present in the lower and upper parts of the studied section (section II) indicated an inner neritic marine environment of moderate energy of currents and rapid sedimentation, while the assemblages in the middle part showed more deeper (outer neritic) environments with low energy of currents and low rate of sedimentation. The palaeobiogeographic distribution of the studied ostracods showed high affinity with the ostracod assemblages of the southern Mediterranean and moderate to low affinities with that of the northern and eastern Mediterranean respectively. The highly ornamented ostracod species with structures on the carapace were recorded from both Northern and Southern Mediterranean, while the smooth ones were found in the Southern Mediterranean only. The highly ornamented species are more widely distributed in both Southern and Northern Mediterranean than the smooth species. This may indicate that the ornamented species are more able to migrate than the smooth ones.  相似文献   

13.
This paper presents biostratigraphical and stable isotope data obtained from core CM92–43, which was recovered from the central Adriatic as part of a comprehensive investigation of the palaeoenvironmental history of the basin. The data span the period of the Last Glacial–Holocene (LG–H) transition (ca. 18000 to 8000 GRIP ice-core yr BP). Regional biozones are defined on the basis of characteristic assemblages of planktic Foraminifera, and these are compared with other foraminiferal biostratigraphical schemes from the southern Adriatic and the Tyrrhenian Sea. Variations in relative abundance of selected planktic Foraminifera and in selected pollen types are shown alongside variations in δ18O and δ13C obtained from Globigerina bulloides and relative abundance of Globigerinoides ex. gr. ruber. The data are compared with the GRIP ice-core record and the event stratigraphy scheme based on this record, and it is concluded that the climate forcing mechanisms that controlled climate variations in the North Atlantic region during the LG–H transition also extended their influence into the Mediterranean region over the same period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Oligocene and Lower Miocene sediments from High Folded Zone of Iraqi Zagros have been studied paleontologically at south of Sulaimaniyah, Kurdistan Region, NE Iraq. The identified fauna are consisted of (25) genera and species of benthonic and (16) species of planktonic foraminifera. The fauna comprises relatively abundant foraminiferal assemblages of moderate diversity. Based on the stratigraphic distribution of these species, two biozones have been recognized which are NummulitesRotalia and Globoquadrina dehiscens zones. These biozones indicate that the studied sections of Basara and Khewata are of Late Oligocene–Early Miocene age. Based on the microfossils, it has been found that the age of sediments is equivalent to or represents Anah and Serikagni Formations. Some previous studies described Oligocene rocks (Kirkuk Group) as interior sag basin. In the present study, the occurrence of the group inside High Folded Zone and its rich fauna content are used for the discussion of the sag basin versus normal marine water.  相似文献   

15.
The Gurpi section in western Shiraz, faulted Zagros range of southwestern Iran, contains one of the most complete Early Santonian to Late Maastrichtian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The Gurpi Formation is mainly made up of grey shale. As a result of this study, 23 genera and 47 species of nannofossils have been identified for the first time. This confirms the existence of biozones CC14–CC26, which suggests the age of Early Santonian to Late Maastrichtian. All Early Santonian to Late Maastrichtian calcareous nannofossil biozones from CC14 (equivalent to the Micula decussate Zone) to CC26 (equivalent to the Nephrolithus frequens Zone) are discussed. Additionally, the zonal subdivision of this section based on calcareous nannofossils, is correlated with planktonic foraminiferal zones (Dicarinella asymetrica Zone to Abathomphalus mayaroensis Zone). We can also learn about the predominant conditions of the studied sedimentary basin that was in fact a part of the Neotethys basin with the existence of index species of calcareous nannofossils indicating a warm climate and high depths of the basin in low latitudes.  相似文献   

16.
The upper Viséan–Serpukhovian strata in the type region for the Serpukhovian Stage is an epeiric‐sea succession ca. 90 m in thickness. The predominantly Viséan Oka Group (comprising the Aleksin, Mikhailov, and Venev formations) is dominated by photozoan packstones with fluvial siliciclastic wedges developed from the west. The Lower Serpukhovian Zaborie Group is composed of the Tarusa and Gurovo formations. The latter is a new name for the shale‐dominated unit of Steshevian Substage age in the studied area. The Zaborie Group is composed of limestones and marls in its lower (Tarusa and basal Gurovo) part and black smectitic to grey palygorskitic shales in the main part of the Gurovo Formation. The Gurovo Formation is capped by a thin limestone with oncoids and a palygorskitic–calcretic palaeosol. The Upper Serpukhovian is composed of a thin (3–12 m) Protva Limestone heavily karstified during a mid‐Carboniferous lowstand. The succession shows a number of unusual sedimentary features, such as a lack of high‐energy facies, shallow‐subtidal marine sediments penetrated by Stigmaria, the inferred atidal to microtidal regime, and palustrine beds composed of saponitic marls. The succession contains many subaerial disconformities characterized by profiles ranging from undercoal solution horizons to palaeokarsts. Incised fluvial channels are reported at two stratigraphic levels to the west of the study area. The deepest incisions developed from the Kholm Disconformity (top of the Mikhailov Formation). This disconformity also exhibits the deepest palaeokarst profile and represents the major hiatus in the Oka–Zaborie succession. The new sea‐level curve presented herein shows two major cycles separated by the Kholm Unconformity at the Mikhailov/Venev boundary. The Lower Serpukhovian transgression moved the base‐level away from falling below the seafloor so that the section becomes conformable above the Forino Disconformity (lower Tarusa). The maximum deepening is interpreted to occur in the lower dark‐shale part of the Gurovo Formation. The base of the Serpukhovian Stage is defined by FADs of the conodont Lochriea ziegleri and the foraminifer Janischewskina delicata in the middle of the sequence VN2. The Aleksinian–Mikhailovian interval is provisionally correlated with the Asbian (Lower–Middle Warnantian) in Western Europe. Based on FODs of Janischewskina typica and first representatives of Climacammina, the Venevian is correlated with the Brigantian in Western Europe. The Tarusian–Protvian interval contains diverse fusulinid and conodont assemblages, but few forms suitable for international correlation. FADs of the zonal conodont species Adetognathus unicornis and Gnathodus bollandensis at several metres above the Protvian base suggest correlation of the entire Zaborie Group and may be the basal Protvian to the Pendleian. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Lower to Middle Miocene successions in three offshore wells named GS 160-2, QQ-89, and Ras Elush-2 located in the central and southern parts of the Gulf of Suez were examined for their planktonic foraminifera, calcareous nannofossil assemblages, and paleoenvironments. These successions are subdivided from older to younger into Aquitanian Nukhul, Burdigalian-Langhian Rudeis, Langhian Kareem, and Serravallian Belayim formations. The identified foraminifera includes 54 benthic species belonging to 25 genera and 47 planktonic species belonging to 11 genera, in addition to 64 calcareous nannofossil species belonging to 21 genera. The stratigraphic distribution of these assemblages suggests classifying the studied successions into seven planktonic foraminiferal and six calcareous nannoplankton biozones. The planktonic foraminiferal and calcareous nannoplankton biozones are integrated. Different environments ranging from shallow inner to outer shelf are recognized. This is based on quantitative analyses of foraminifera including benthic biofacies, planktonic/benthonic ratio, and diversity. Syn-rift tectonics played an important role in configuration of the Miocene depositional history in the Gulf of Suez region.  相似文献   

18.
Deposition of organic rich black shales and dark gray argillaceous limestones in the Berriasian–Turonian interval has been documented in many parts of the world. Northwest of Zagros, Iran (Lurestan zone), thin bedded black shales and marls, dark gray argillaceous limestones and fissile limestone layers, having bitumen, of the Garau Formation are deposited. For biostratigraphic studies two stratigraphic sections including one surface section (Kuzaran) and one subsurface section (Naft well) were selected, respectively. In this study, 61 foraminiferal species belonging to 17 genera have been identified, and 12 biozones were recognized. Based on fossils distribution and biozones identification, the age of the Garau Formation is Berriasian?–early Cenomanian. In addition, the micropalaeontological study demonstrated a variety of widespread morphological changes in planktonic foraminifera assemblages (e.g., the elongation of the final chambers, appearance of twin chambers in the last whorl). These changes coincide with deposition of argillaceous limestones and marls rich in organic matter, indicating oceanic anoxic events. On this basis, three oceanic anoxic events such as OAE1a, OAE1b and OAE1d were recognized in Naft well section and two (OAE1b and OAE1d) in Kuzaran section.  相似文献   

19.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

20.
This paper presents a considerably revised biostratigraphy for Upper Albian through Coniacian pelagic limestone and shale sequences in the northeastern Caucasus region based primarily on planktic foraminiferal distributions. The use of concentrated acetic acid for the extraction of microfossils from the hard limestones has yielded a much more detailed planktic foraminiferal biostratigraphy than has been documented previously. Because of the low latitude location of the study area the high diversity assemblages contain many of the biomarkers used to identify standard Tethyan biozones ranging from the Rotalipora appenninica Zone through the Dicarinella concavata Zone. A key result of this study is the recognition of an apparently continuous Cenomanian/Turonian boundary interval within a laminated, dark marl that is enriched in organic carbon. Extinction of the single-keeled rotaliporids corresponds with the onset of deposition of the laminated marl beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号