首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Any earthquake event is associated with a rupture mechanism at the source, propagation of seismic waves through underlying rock and finally these waves travel through the soil layers to the particular site of interest. The bedrock motion is significantly modified at the ground surface due to the presence of local soil layers above the bedrock beneath the site of interest. The estimation of the amplifications in ground response due to the local soil sites is a complex problem to the designers and the problem is more important for mega cities like Mumbai in India, where huge population may get affected due to devastations of earthquake. In the present study, the effect of local soil sites in modifying ground response is studied by performing one dimensional equivalent-linear ground response analysis for some of the typical Mumbai soil sites. Field borelog data of some typical sites in Mumbai city viz. Mangalwadi site, Walkeswar site, BJ Marg near Pandhari Chawl site are considered in this study. The ground responses are observed for range of input motions and the results are presented in terms of surface acceleration time history, ratio of shear stress to vertical effective stress versus time, acceleration response spectrum, Fourier amplitude ratio versus frequency etc. The typical amplifications of ground accelerations considering four strong ground motions with wide variation of low to high MHA, frequency contents and durations are obtained. Results show that MHA, bracketed duration, frequency content have significant effects on the amplification of seismic accelerations for typical 2001 Bhuj motion. The peak ground acceleration amplification factors are found to be about 2.50 for Mangalwadi site, 2.60 for Walkeswar site and 3.45 for BJ Marg site using 2001 Bhuj input motion. The response spectrum along various soil layers are obtained which will be useful for designers for earthquake resistant design of geotechnical structures in Mumbai for similar sites in the absence of site specific data.  相似文献   

2.
In geotechnical earthquake engineering, wave propagation plays a fundamental role in engineering applications related to the dynamic response of geotechnical structures and to site response analysis. However, current engineering practice is primarily concentrated on the investigation of shear wave propagation and the corresponding site response only to the horizontal components of the ground motion. Due to the repeated recent observations of strong vertical ground motions and compressional damage of engineering structures, there is an increasing need to carry out a comprehensive investigation of vertical site response and the associated compressional wave propagation, particularly when performing the seismic design for critical structures (e.g. nuclear power plants and high dams). Therefore, in this paper, the compressional wave propagation mechanism in saturated soils is investigated by employing hydro-mechanically (HM) coupled analytical and numerical methods. A HM analytical solution for compressional wave propagation is first studied based on Biot’s theory, which shows the existence of two types of compressional waves (fast and slow waves) and indicates that their characteristics (i.e. wave dispersion and attenuation) are highly dependent on some key geotechnical and seismic parameters (i.e. the permeability, soil stiffness and loading frequency). The subsequent HM Finite Element (FE) study reproduces the duality of compressional waves and identifies the dominant permeability ranges for the existence of the two waves. In particular the existence of the slow compression wave is observed for a range of permeability and loading frequency that is relevant for geotechnical earthquake engineering applications. In order to account for the effects of soil permeability on compressional dynamic soil behaviour and soil properties (i.e. P-wave velocities and damping ratios), the coupled consolidation analysis is therefore recommended as the only tool capable of accurately simulating the dynamic response of geotechnical structures to vertical ground motion at intermediate transient states between undrained and drained conditions.  相似文献   

3.
近断层地震动模拟现状   总被引:3,自引:0,他引:3  
王海云  谢礼立 《地球科学进展》2008,23(10):1043-1049
地震动是由3个物理过程(震源破裂过程、波传播过程、场地反应)组成的一种复杂系统的产物,地震动模拟均是围绕这3个物理过程的建模开展的。地震动模拟目前仍然是一门相对较新的科学,强震观测中不断发现的新情况、新问题及其深入研究进一步推动近断层地震学理论和实践的发展。减少建模中的不确定性,用基于观测物理学的统计特征逐渐取代基于现象的假设描述,以改善地震动模拟的精度。基于大量地震动模拟的研究文献和资料,归纳、评述了近断层地震动模拟方法的现状、3个物理过程的建模方法及其发展趋势。  相似文献   

4.
场地条件对地震动和震害有重要影响。本文简要回顾了场地条件对地震动和震害影响的研究历史,总结和评述了这一领域的研究进展。重点对地形地貌、岩土类型、覆盖层厚度、土层结构、地下水、岩土动力性质及物理地质现象等对地震动和震害的影响进行了总结和评述。提炼和概括了目前场地条件对地震动和震害影响研究中比较一致的几点认识。在此基础上,提出了这一领域当前应进一步研究的问题,主要包括地震现场资料调查、局部地形几何尺度、场地分类、覆盖层安全厚度界限、近断层地震动参数分布规律、活断层避让距离,以及强震资料积累等关键问题。  相似文献   

5.
This paper addresses the topic of simulating spatially variable ground motion fields conditioned on a known accelerogram. The conditional ground motion fields can be used in design or verification studies where seismic analysis has to be performed for a couple of natural accelerograms that have been preselected by seismologists or other experts. The methodology is based on conditional densities. In contrast to most authors, the conditional densities method is not applied to the Fourier coefficients, but it is used for the construction of a conditional Gaussian process model in the time domain. This has the advantage that fully non-stationary conditional time histories can be simulated directly in the time domain. The cross-correlation functions needed for this approach are evaluated from commonly used ground motion models expressed as evolutionary power spectral densities. An application to the El Centro earthquake record is presented. The properties of the simulated ground motion fields are analysed and compared to the data and the theoretical model.  相似文献   

6.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

7.
Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.  相似文献   

8.
基于 GIS 的智能辅助矿产预测系统研究   总被引:1,自引:0,他引:1  
王自杰  赵鹏大 《现代地质》1997,11(3):339-339,353
本文是在“中大比例尺矿床统计预测智能辅助系统(MILASP系统)”的研制中完成的。其中对GIS 与Internet的关系作了论述‚推导并应用了“扩展证据加权模型”‚对陕西省勉略宁地区进行了实例应用 研究‚初步实现了矿床统计预测工作的计算机化和自动化‚加强了智能辅助支持功能的开发‚集GIS、 RS、ES3种功能为一体‚代表了专用型GIS软件开发的最新方向。  相似文献   

9.
作为地震灾害评估的理论基础,地震动力学主要研究与地震活动有关的断裂机制、破裂过程、震源辐射和由此而引起的地震波的传播及地面运动规律。对地震力学、震源辐射和能量释放等经典理论问题进行了系统研究。在此基础上,应用最新的定量地震学研究方法,以逻辑树的形式综合地震、地质和大地测量资料,提供了不同构造环境和断裂机制条件下地震灾害评估的概率分析和确定性分析实例。用于震源分析的典型构造类型包括板内地壳震源层、地壳活动断层及其速率、板块俯冲界面和俯冲板片。由于输入模型中不确定因素的存在,如输入参数的随机性和科学分析方法本身的不确定性,对分析结果的不确定性需审慎对待。通常对不同的模型或参量,包括地面衰减模型,进行加权平均可较为合理地减小结果的偏差:概率分析和确定性分析方法的结合亦为可取之有效途径。  相似文献   

10.
沙牌坝址基岩场地地震动输入参数研究   总被引:2,自引:0,他引:2  
钟菊芳  温世亿  胡晓 《岩土力学》2011,32(2):387-392
重大水利水电工程地震动输入参数必须根据专门的地震危险性分析结果来确定。目前由地震危险性分析得到的一致概率反应谱具有包络的意义,不能反映实际地震的频谱特性,输入“一致概率反应谱”可能导致地震作用偏大;拟合设计反应谱人工生成地震动加速度时程的频率非平稳性也没有得到很好解决。为了解决这些问题,得到与坝址地震危险性一致、具体地震的输入参数,结合沙牌大坝提出了一套适用于重大水利水电工程基岩场地地震动输入参数确定方法:通过以有效峰值加速度为参数的概率地震危险性计算分析,确定坝址不同超越概率下的有效峰值加速度及对坝址贡献最大的潜在震源区;在最大贡献潜在震源内利用震级空间联合分布概率最大法确定坝址设定地震,依据加速度反应谱衰减关系确定与坝址设定地震对应的设计反应谱;根据设定地震结果和时变功率谱模型参数衰减关系确定时变功率谱,将时变功率谱和最小相位谱按三角级数叠加法进行强度和频率非平稳地震加速度时程合成。在对沙牌坝址区域的地震活动性及地震构造环境分析评价的基础上,采用上述方法,得到了坝址基岩场地不同超越概率下的有效峰值加速度、设计反应谱、强度和频率非平稳地震加速度时程等地震动输入参数。  相似文献   

11.
孔宪京  周扬  邹德高  徐斌 《岩土力学》2012,33(7):2110-2116
对国家强震动台网中心紫坪铺面板堆石坝区域台站实测主震记录以及大坝台网实测余震记录进行分析,研究主震与强余震地震动的基本特征。分别选取茂县地办、郫县走石山、成都中和这3组基岩台站实测主震地震动,紫坪铺台站2008年11月6日实测余震地震动以及按水工抗震规范人工生成地震动作为数值计算的地震动输入,对紫坪铺大坝进行三维动力有限元分析,并与实测结果进行对比。研究表明,郫县走石山与成都中和2个远场台站位于断层下盘,其实测地震动的加速度反应谱长周期(0.65 s以后)分量过于丰富,不宜作为断裂带附近紫坪铺大坝的地震动输入;紫坪铺大坝台站实测的余震地震动1 Hz附近(大坝基频)的频率成分相对较少,且持续时间较短,以至于难以激发大坝响应;对比坝顶实测地震动加速度反应谱和数值计算反应谱,建议汶川地震中紫坪铺大坝动力计算时可采用茂县地办台站实测地震动或按抗震设计规范反应谱人工生成地震动。  相似文献   

12.
地震地面效应是地震工程和工程地震工作者共同关心的问题.前者着重研究地震动对上部结构的影响,后者则主要从事研究地震动对场地地基工程地质条件的影响.1979年对北京市区所作的一维地震反应分析,得出了土层厚度是影响地震地面运动的主要因素.输入地震动的卓越周期及其加速度峰值对反应谱形状的影响较时程曲线的影响明显.但一维方法只反映有界水平层及地震垂向上传.二维动力有限元地震反应分析改进了上述局限性,它可以研究任意形状的地基地质结构,能够反映埋藏基岩地形对地震波的折射、反射所产生的能量聚、散效应,埋藏基岩地形对地震地面效应的影响比上复松软土层土质不均匀的影响要大.超声地震模型实验首次引入工程地震学的研究课题中,得到了与上述数值分析方法相似的结果,并提出若干新问题.它提供了一种能够全面模拟震源—传播途径—场地地质结构的综合研究方法.  相似文献   

13.
目前产生地震的机制仍以弹性回跳说为主:地震是因为断层错断使岩层的弹性能释放而引发。但越来越多的学者开始质疑,仅断层错断后的弹性能,是否真能达到实际地震所释放的巨大能量。因此,有必要探讨地震初动后破坏性强震的性质及其真正的能量来源。文章根据沉积地层中的储集层及其压力的特点分析得出,储集层内含有大量的高压流体,其压力在一定条件下可以释放出来,产生流体物理爆炸,有可能是强震能量的重要组成部分。通过计算得出,当断层破裂并刺穿面积较大的储集层时,其压力释放所产生的弹性能可以达到震级8.0以上地震所释放的能量;人为的工程活动也可引发小规模的流体压力的释放现象,如钻井时的井喷、水力压裂会诱发有感地震等。同时,文章根据对距离震中较近的地震台的波形及传播射线路径分析认为,强震波动可能不是横波S波,而是涨缩波P波,据此不能排除强震是由爆炸所致。综合汶川地震多个台站记录到的地震波的时间域和频率域特征、地面观测到的爆炸现象、地震后科学钻探获得的岩心等大量直接或间接证据,说明了这种流体爆炸能量释放的可能性。最后,文章提出了地震活动可分为三个阶段:微破裂阶段Ⅰ,该阶段有流体活动,并可产生动电效应,但未触发地震初动;地震初动后的断裂破裂阶段Ⅱ;由流体压力释放产生地震强震阶段Ⅲ。   相似文献   

14.
何颖  于琴  刘中宪 《岩土力学》2019,40(7):2739-2747
提出了一种考虑地震波散射效应的沉积河谷空间相关多点地震动模拟方法。基于弹性波传播理论,采用合理功率谱、相干函数和传递函数模型,借助原型谱表示法得到沉积河谷空间相关多点地震动,并验证了方法的可行性。其中,传递函数应用动力边界元法计算,可在很宽的频带内精细模拟沉积河谷中波型转换及聚焦效应。针对常见V型河谷开展了计算模拟,结果表明,河谷地形及松软沉积层对地震波传播具有显著影响,河谷地表地震动空间差异性十分显著,一维模型难以考虑地震波的散射及聚焦效应,从而会明显低估沉积内部部分区域的地震动峰值加速度。沉积河谷中大跨结构抗震设计宜采用考虑地震波散射效应的空间相关多点地震动输入。  相似文献   

15.
场地土对基岩峰值加速度放大效应分析   总被引:1,自引:2,他引:1  
通过实际土层地震反应结果的统计分析和强震加速度观测结果的对比, 讨论了不同场地条件对基岩峰值加速度的放大效应及其特点。该分析可为地震动参数区划图编制和地震安全性评价中场地效应的估计、由基岩地震动估算场地地面地震动提供参考。  相似文献   

16.
High frequency ground motion simulation techniques are powerful tools for designing earthquake resistant structures in seismically active regimes. Simulation techniques also provide the synthetic strong ground motion in the regions where actual records are not available (Kumar et al. 2015).These techniques require several parameters of earthquake and other seismic information proceeding to the simulation. Practically estimation of parameters is a tough task, particularly in a region with limited information. This demands a simulation technique based on the easily estimated parameters for a new site. The purposes of this paper are to briefly review existing simulation techniques and to discuss in detail the new, simple and effective semi-empirical technique (Midorikawa 1993) of strong motion simulation.  相似文献   

17.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

18.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

19.
Urban earthquake scenario requires compilation and interpretation of topographical, geological, geotechnical, macroseismic, and instrumental data, along with identification of proper ground motion prediction and site response analysis. Within the intensive city planning and infrastructure improvement of Baku city (the capital of Azerbaijan), and due to land and water instabilities, intensified landslides, and increasing seismic activity, Absheron peninsula has turned into one of the strategic earthquake case studies, representing exposure to earthquake hazard in the region. The last strongest 25th November 2000 earthquake revealed that the peninsula was severely vulnerable to seismic events, since there was a lack of public awareness of seismic disaster and its consequences, and there were not any preventive measures which might have been derived from the scenario-based simulations and prediction of strong motion distribution over the area. In the present work, integrated analysis of seismicity, engineering geology, geomorphology, topography, and site response is used to model strong motion dynamics in terms of peak ground acceleration distribution and intensity level for Absheron peninsula along with Baku city. The strong motion scenario of the 25th November 2000 earthquake shows that the larger area of the peninsula coincides with the VIII–IX intensity level, including Baku city. The scenario distribution can be valuable in all phases of the disaster management process.  相似文献   

20.
土工结构地震滑动位移统计分析   总被引:1,自引:0,他引:1  
杜文琪  王刚 《岩土力学》2011,32(Z1):520-0525
土工结构在地震荷载下的滑动位移是评估结构安全性能的重要参数。采用一种新型的地震波选择方法,在强震数据库中选择修改地震波,以有效地在结构动力分析中引入不同特征地震波的影响。通过一个简单的土工结构地震滑移模型,系统地分析了结构基本周期和滑动面屈服系数对地震滑移概率及相应滑移距离的影响,并提出了滑动体在不同地震场景和基本周期条件下的滑移概率和累积滑动位移的统计模型,对基于性能的土工结构抗震设计具有重要的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号