首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tres Marias carbonate-hosted Zn–Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn–Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.  相似文献   

2.
Sulfur-isotope (34S) values and weight (%) of acid-volatile sulfur (AVS), chrome-reducible sulfide (CRS), elemental sulfur (ES), and acid-soluble sulfates were determined in Balya Mine ore rock, mine wastes, and Kocacay River and Lake Manyas sediments. Estimation of isotopic fractionation (34S) between product sulfate and initial CRS (pyrite) was used to evaluate the progress of sulfide oxidation in the mine-waste area. Water- and acid-soluble sulfate produced from different mine-waste samples, such as metallurgical waste (MW) and waste rock (WR), in laboratory experiments also shows distinct 34S values and allows identification of the acid-mine-drainage sources in the mine-waste area. Average 34SSO4values are –1.43 for MW (n=4) and +2.06 for WR (n=8). Short (24 hr) and long (60 days) term leach experiments were considered using alternating wet/dry conditions to simulate sulfate-production capacity and metal-discharge characteristics for MW and WR piles. Release of heavy metals follows the order of Pb2+ >Mn2+ >Zn2+ >Cu2+ for these pile samples. Values of 34SSO4 for river water that was collected after 3–4 h of heavy rainfall are close to values of 34SSO4 for water-soluble sulfates from mine-waste piles used in laboratory leach experiments.This revised version was published in February 2005 with corrections to the placement of the figures.  相似文献   

3.
The Garson Ni–Cu–platinum group element deposit is a deformed, overturned, low Ni tenor contact-type deposit along the contact between the Sudbury Igneous Complex (SIC) and stratigraphically underlying rocks of the Huronian Supergroup in the South Range of the 1.85-Ga Sudbury structure. The ore bodies are coincident with steeply south-dipping, north-over-south D1 shear zones, which imbricated the SIC, its ore zones, and underlying Huronian rocks during mid-amphibolite facies metamorphism. The shear zones were reactivated as south-over-north, reverse shear zones during D2 at mid-greenschist facies metamorphism. Syn-D2 metamorphic titanite yields an age of 1,849?±?6 Ma, suggesting that D1 and D2 occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to colinear L1 and L2 mineral lineations, indicating that the geometry of the ore bodies are strongly controlled by D1 and D2. Sulfide mineralization consists of breccia ores, with minor disseminated sulfides hosted in norite, and syn-D2 quartz–calcite–sulfide veins. Mobilization by ductile plastic flow was the dominant mechanism of sulfide/metal mobilization during D1 and D2, with additional minor hydrothermal mobilization of Cu, Fe, and Ni by hydrothermal fluids during D2. Metamorphic pentlandite overgrows a S1 ferrotschermakite foliation in D1 deformed ore zones. Pentlandite was exsolved from recrystallized polygonal pyrrhotite grains after cessation of D1, which resulted in randomly distributed large pentlandite grains and randomly oriented pentlandite loops along the grain boundaries of polygonal pyrrhotite within the breccia ore. It also overgrows a S2 chlorite foliation in D2 shear zones. Pyrrhotite recrystallized and was flattened during D2 deformation of breccia ore along narrow shear zones. Exsolution of pentlandite loops along the grain boundaries of these flattened grains produced a pyrrhotite–pentlandite layering that is not observed in D1 deformed ore zones. The overprinting of the two foliations by pentlandite and exsolution of pentlandite along the grain boundaries of flattened pyrrhotite grains suggest that the Garson ores reverted to a metamorphic monosulfide solid solution at temperatures ranging between 550 and 600 °C during D1 and continued to deform as a monosulfide solid solution during D2.  相似文献   

4.
The Pillara Zn–Pb deposit is the largest of several known Mississippi Valley-type (MVT) deposits in the Lennard Shelf of the Canning Basin. Paleomagnetic and rock magnetic measurements are reported for 294 specimens from 23 sites in mineralization and its carbonate host rocks from the deposit as well as on 15 artificial specimens of zinc and lead concentrate and of tailings. Pyrrhotite carries the characteristic remanent magnetization (ChRM) in nearly all specimens. The ChRM postdates most faulting as shown by breccia tests and most minor regional tilting as shown by the degraded fit on tilt correction. The mean ChRM direction for all sites is D=20.6°, I=–27.5° (N=23, 95=5.3°, k=34.1), yielding an age of 358±5 Ma (2) that is similar to the comparable age of 354±8 Ma (2) for the Kapok MVT deposit. Host rock diagenesis with attendant secondary remagnetization yields an age of 361±5 Ma (1) and the MVT mineralization with a primary chemical remanent magnetization gives an age of 356±3 Ma (1), co-eval with a published Rb–Sr sphalerite age of 357±3 Ma. Interpretation of this temporal data suggests that the MVT deposits of the southeastern Lennard Shelf originated during extension, probably in response to rift-related topography-driven fluid flow.Editorial handling: C. Brauhart  相似文献   

5.
The archetypical komatiite-hosted Alexo Ni–Cu–(PGE) deposit occurs in the 2,720–2,710-Ma Kidd-Munro Assemblage of the western Abitibi greenstone belt in Dundonald Township, Ontario. Detailed mapping of a 200-m long glacially polished outcrop provides unequivocal evidence that the host komatiite flow thermomechanically eroded footwall andesites: (1) the contact between komatiite and andesite is very sharp but delicately scalloped, marked by a <1-cm-thick selvedge of black aphanitic komatiite and clearly transgresses pillow structures and interpillow breccias in the andesite without any evidence of a regolith, shearing, or folding, producing multiple nested embayments on scales from hundreds of meters to a few centimeters; (2) the andesites have been contact metamorphosed and altered along the entire length of the outcrop and the degree of metamorphism/alteration is thicker and more intense around embayments; (3) xenoliths of andesite in komatiite are more common within embayments; (4) komatiitic dikes penetrate downward into underlying andesites, primarily along the lateral margins of embayments; and (5) many of the dikes and marginal rocks exhibit geochemical evidence of contamination. This physical and geochemical evidence for thermomechanical erosion, combined with S isotopic evidence for a major component of non-magmatic country-rock S in the ores, provides additional support for the roles of thermomechanical erosion and incorporation of country-rock S in the genesis of komatiite-associated Ni–Cu–(PGE) deposits. The detailed mapping also reveals that the stratigraphy of the ore zone is considerably more complex than previously reported, indicating that the sulfides were emplaced in several stages, confirming the dynamic nature of the ore emplacement process in komatiite-associated Ni–Cu–(PGE) deposits.  相似文献   

6.
Based on the mineral and chemical compositions of spoils taken from the Shilu Cu-Mo deposit and Hetai gold deposit ,the leaching and batch experiments were made on spoils taken from these two deposits using the leaching column designed by the authors.The experimental results showed that it is not always true that the imine drainage is acidic.Its acidity depends on acid-buffering capacity of gangue,host rock and its alteration mineral assemblage.The composi-tion of the drainage water is related with the interaction between superficial or underground water and solid materials in the spoils,including minerals,hydroxides and amorphous substances.The leaching extent of the element is related with its occurrence form in the deposit.The prefer-ential flow results in leaching-out of heavy metals in large amounts.So it is important to prevent the generating of preferential flow in the system.The results will provide very important grounds for the comprehensive management of land and ecological rehabilitation of the mine site.  相似文献   

7.
8.
Carbonate, largely in the form of dolomite, is found throughout the host rocks and ores of the Nchanga mine of the Zambian Copperbelt. Dolomite samples from the hanging wall of the mineralization show low concentrations of rare-earth elements (REE) and roof-shaped, upward convex, shale-normalized REE patterns, with positive Eu*SN anomalies (1.54 and 1.39) and marginally negative Ce anomalies (Ce*SN 0.98,0.93). In contrast, dolomite samples associated with copper and cobalt mineralization show a significant rotation of the REE profile, with HREE enrichment, and La/LuSN ratios <1 (0.06–0.42). These samples also tend to show variable but predominantly negative Eu*SN and positive cerium anomalies and an upwardly concave MREE distribution (Gd-Er). Malachite samples from the Lower Orebody show roof-tile-normalized REE patterns with negative europium anomalies (Eu*SN 0.65–0.80) and negative cerium anomalies (Ce*SN 0.86–0.9). The carbonate 87Sr/86Sr signature correlates with the associated REE values. The uppermost dolomite samples show Neoproterozoic seawater-like 87Sr/86Sr ratios ranging from 0.7111 to 0.7116, whereas carbonate from Cu–Co mineralized samples show relatively low concentrations of strontium and more radiogenic 87Sr/86Sr, ranging between 0.7136–0.7469. The malachite samples show low concentrations of strontium, but give a highly radiogenic 87Sr/86Sr of 0.7735, the most radiogenic 87Sr/86Sr ratio. These new data suggest that the origin and timing of carbonate precipitation at Nchanga is reflected in the REE and Sr isotope chemistry. The upper dolomite samples show a modified, but essentially seawater-like signature, whereas the rotation of the REE profile, the MREE enrichment, the development of a negative Eu*SN anomaly and more radiogenic 87Sr/86Sr suggests the dolomite in the Cu–Co mineralized samples precipitated from basinal brines which had undergone significant fluid–rock interaction. Petrographic, REE, and 87Sr/86Sr data for malachite are consistent with the original sulfide Lower Orebody being subject to a later oxidizing event.  相似文献   

9.
Sulfide inclusions in diamonds from the 90-Ma Jagersfontein kimberlite, intruded into the southern margin of the Kaapvaal Craton, were analyzed for their Re–Os isotope systematics to constrain the ages and petrogenesis of their host diamonds. The latter have δ13C ranging between −3.5 and −9.8‰ and nitrogen aggregation states (from pure Type IaA up to 51% total N as B centers) corresponding to time/temperature history deep within the subcontinental lithospheric mantle. Most sulfides are Ni-poor ([Ni + Co]/Fe = 0.05–0.25 for 15 of 17 inclusions), have elevated Cu/[Fe + Ni + Co] ratios (0.02–0.36) and elemental Re–Os ratios between 0.5 and 46 (12 of 14 inclusions) typical of eclogitic to more pyroxenitic mantle sources. Re–Os isotope systematics indicate two generations of diamonds: (1) those on a 1.7 Ga age array with initial 187Os/188Os (187Os/188Osi) of 0.46 ± 0.07 and (2) those on a 1.1 Ga array with 187Os/188Osi of 0.30 ± 0.11. The radiogenic initial Os isotopic composition for both generations of diamond suggests that components with high time-integrated Re–Os are involved, potentially by remobilization of ancient subducted oceanic crust and hybridization of peridotite. A single sulfide with higher Os and Ni content but significantly lower 187Os/188Os hosted in a diamond with less aggregated N may represent part of a late generation of peridotitic diamonds. The paucity of peridotitic sulfide inclusions in diamonds from Jagersfontein and other kimberlites from the Kaapvaal craton contrasts with an overall high relative abundance of diamonds with peridotitic silicate inclusions. This may relate to extreme depletion and sulfur exhaustion during formation of the Kaapvaal cratonic root, with the consequence that in peridotites, sulfide-included diamonds could only form during later re-introduction of sulfur.  相似文献   

10.
目前,在北京市域内非法开采矿产资源量计算工作中,普遍使用的计算方法有CASS软件DTM土石方计算法和垂直纵投影(水平投影)法,但在实际运用中这两种方法均存在一定缺陷,前者运算过程复杂,且难以查错,后者计算结果误差较大。利用3D Mine软件,计算北京市某村非法开采矿产资源量,计算结果经过相关部门证实与实际情况高度吻合,证明3D Mine软件计算结果真实可靠。该方法具有操作简便、易于查错、三维可视化、成果直观等优势。  相似文献   

11.
The Polaris Zn–Pb Mine in Nunavut, Canada was one of the largest single Mississippi Valley-type ore deposits in the world. Over 20 Mt of sphalerite (ZnS) and galena (PbS) was hosted in brecciated carbonate rocks of the Upper Ordovician Thumb Mountain Formation. Three paragenetic stages are recognized: 1) early dolomite and marcasite; 2) main stage sulphide and dolomite; and 3) late calcite, marcasite and barite. Ore mineral textures range from discrete crystals to massive crystal aggregates and formed as replacements of the dolomite host rock or as fracture- and open space-filling mineralization. Zinc concentration is highest in the core of the deposit where botryoidal aggregates predominate, whereas iron is concentrated in the upper part. Observations of temperature and in situ sulphur isotope fractionation support a genetic model for the Polaris deposit in which thermochemical sulphate reduction occurred within the deposit, with locally generated hydrocarbons acting as a reducing agent. Information from the Polaris Mine indicates that hydrothermal alteration including dolomite, marcasite and barite; complex paragenesis with numerous ore textures; Th values > 100 °C associated with organic-rich strata; and a geochemical signature that includes in situ sulphur fractionation are effective predictors for determining which showings are prospective in the vast central Arctic Pb–Zn district.  相似文献   

12.
Previous studies have shown that the ascending, oxidizing brines play a very important role in Kupferschiefer mineralization. Fractures could be the pathway of the brines. In order to clarify the influences of the brines on bulk organic matter, aromatic hydrocarbons and Kupferschiefer mineralization, one veinlet Kupferschiefer profile from the Lubin mine, southwestern Poland was studied with the microscopic, geochemical and Rock-Eval methods. The microscopic results indicate that organic matter of the veinlet sample consists dominantly of bitumen. Its extract content is higher than in other samples. The dominant aromatic compounds are naphthalene and alkylated naphthalenes (Na-PAH), which have migrated into the veinlet sample from other sediments. The content of phenanthrene and its methylated derivatives (Ph-PAH) is much lower than in other samples. The reason may be due to their heavier mass than Na-PAH. It is more difficult for Ph-PAH to migrate. The Na-PAH was probably removed from the shale by dist  相似文献   

13.
Detailed mineralogical and petrochemical studies show that the Laoniugou gneiss of the Jiapigou gold mine is composed mainly of plagioclase gneiss and irregular to lentiform plagioclase amphibolite melanic enclaves.The major element contents show an obvious bimodal and trondhjemitic series evolutional trend.This situation is significantly different from that encountered in bimodal calc-alkalic volcanic rocks in the rift-type Archaean greenstone belt.The contents of Rb,Sr and Ba are 7-21 ppm,153-363ppm and 201-1451 ppm respectively ,close to those of common Archaean grey gneisses.All the samples of plagioclase gneisses show positive Eu anomalies (even up to 4.6).The protoliths of the plagioclase gneiss are high-Al2O3 trondhjemitic series rocks,belonging to typical TTG of Archaean high-grade metamorphic terrain .The gneiss is quite similar to the B-type Amitsoq gneiss of W.Greenland .The authors believe that the plagioclase amphibolite enclaves are the relics of ancient oceanic crust while the plagioclase gneiss is the TTG ancient intrusive rock resulting from partial melting of the oceanic crust.  相似文献   

14.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   

15.
The Guanajuato epithermal district is one of the largest silver producers in Mexico. Mineralization occurs along three main vein systems trending dominantly northwest–southeast: the central Veta Madre, the La Luz system to the northwest, and the Sierra system to the east. Mineralization consists dominantly of silver sulfides and sulfosalts, base metal sulfides (mostly chalcopyrite, galena, sphalerite, and pyrite), and electrum. There is a broad zonation of metal distribution, with up to 10 % Cu+Pb+Zn in the deeper mines along the northern and central portions of the Veta Madre. Ore occurs in banded veins and breccias and as stockworks, with gangue composed dominantly of quartz and calcite. Host rocks are Mesozoic sedimentary and intrusive igneous rocks and Tertiary volcanic rocks. Most fluid inclusion homogenization temperatures are between 200 and 300 °C, with salinities below 4 wt.% NaCl equivalent. Fluid temperature and salinity decreased with time, from 290 to 240 °C and from 2.5 to 1.1 wt.% NaCl equivalent. Relatively constant fluid inclusion liquid-to-vapor ratios and a trend of decreasing salinity with decreasing temperature and with increasing time suggest dilution of the hydrothermal solutions. However, evidence of boiling (such as quartz and calcite textures and the presence of adularia) is noted along the Veta Madre, particularly at higher elevations. Fluid inclusion and mineralogical evidence for boiling of metal-bearing solutions is found in gold-rich portions of the eastern Sierra system; this part of the system is interpreted as the least eroded part of the district. Oxygen, carbon, and sulfur isotope analysis of host rocks, ore, and gangue minerals and fluid inclusion contents indicate a hydrothermal fluid, with an initial magmatic component that mixed over time with infiltrating meteoric water and underwent exchange with host rocks. Mineral deposition was a result of decreasing activities of sulfur and oxygen, decreasing temperature, increasing pH, and, in places, boiling.  相似文献   

16.
针对大型堆填场基层结构工程,本着就地取材节约成本的原则,利用吹填砂作为骨料,添加粉煤灰、煤渣和水泥,采用正交试验方法,编制正交设计表,配制不同比例的混合料进行无侧限抗压强度试验。采用方差对不同龄期的混合料抗压强度进行分析,并对混合料加固机理进行研究,给出了混合料最佳质量配比,即水泥20%,粉煤灰15%,煤渣10%,此时混合料的强度最大;其水泥掺量对混合料强度起着关键作用,随着龄期的增长粉煤灰与煤渣对混合料强度影响程度逐渐增强,不过煤渣对混合料初期强度影响不及粉煤灰。   相似文献   

17.
The Pénestin section (southern Brittany) presents large regular undulations, commonly interpreted as evidence of periglacial pingos. It is an upper Neogene palaeoestuary of the Vilaine River reactivated during the middle Quaternary (middle terrace). It is incised into a thick kaolinitic saprolite and deformed by saprolite diapirs. This paper presents the arguments leading to a mechanistic interpretation of the deformations at Pénestin. Neither recent transpressive tectonics nor diagnostic evidence of periglacial pingo have been found despite evidence for a late paleo-permafrost. The major deformational process is shale diapirism, initially triggered by co-seismic water supply, with further loading and lateral spreading on an already deformed and deeply weathered basement, which allowed the shale diapirism to develop. Deformations are favoured by the liquefaction of the saprolite and a seaward mass movement and recorded, rather distant, effects of an earthquake (c. 280 ka B.P.) resulting from the progressive subsidence of the southern Armorican margin. These deformations triggered by an earthquake are similar to those induced by classical shale diapirism. They are probably common in tectonically active continental environments with shallow water table.  相似文献   

18.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

19.
A symplectite of pyrite and magnetite in the massive sulphide ore of the Mashan mine,Anhui Province,is interpreted to have been formed by their replacing earlier pyrrhotite.The compositions of pyrrhotite,pyrite and magnetite related to this texture are given by electron microprobe analysis.Such a texture is likely to be formed when the ore-forming system reaches the three-phase point of pyrrhotite,pyrite and magnetite from the pyrrhotite stability field.The very small probability for the system to reach this point could be used to account for the rare occurrence of such symplectite in natural ores.  相似文献   

20.
The northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt (NGPB), characterized by skarn and porphyry deposits, is one of the most important metallogenic belts in the Himalaya–Tibetan continental orogenic system. This belt extends for nearly four hundred kilometers along the Luobadui–Milashan Fault in the central Lhasa subterrane, and contains more than 10 large ore deposits with high potential for development. Three major types of mineralization system have been identified: skarn Fe systems, skarn/breccia Pb–Zn–Ag systems, and porphyry/skarn Mo–Cu–W systems. In this study, we conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf isotopic study of ore-forming rocks in the NGPB, specifically the Jiangga, Jiaduopule, and Rema skarn Fe deposits, and the Yaguila Pb–Zn–Ag deposit. Although some of these deposits (porphyry Mo systems) formed during the post-collisional stage (21–14 Ma), the majority (these three systems) developed during the main (‘soft collision’) stage of the India–Asia continental collision (65–50 Ma). The skarn Fe deposits are commonly associated with granodiorites, monzogranites, and granites, and formed between 65 and 50 Ma. The ore-forming intrusions of the Pb–Zn–Ag deposits are characterized by granite, quartz porphyry, and granite porphyry, which developed in the interval of 65–55 Ma. The ore-forming porphyries in the Sharang Mo deposit, formed at 53 Ma. The rocks from Fe deposits are metaluminous, and have relatively lower SiO2, and higher CaO, MgO, FeO contents than the intrusions associated with Mo and Pb–Zn–Ag mineralization, while the Pb–Zn–Ag deposits are peraluminous, and have high SiO2 and high total alkali concentrations. They all exhibit moderately fractionated REE patterns characterized by lower contents of heavy REE relative to light REE, and they are enriched in large-ion lithophile elements and relatively depleted in high-field-strength elements. Ore-forming granites from Fe deposits display 87Sr/86Sr(i) = 0.7054–0.7074 and εNd(t) =  4.7 to + 1.3, whereas rocks from the Yaguila Pb–Zn–Ag deposit have 87Sr/86Sr(i) = 0.7266–0.7281 and εNd(t) =  13.5 to − 13.3. In situ Lu–Hf isotopic analyses of zircons from Fe deposits show that εHf(t) values range from − 7.3 to + 6.6, with TDM(Hf)C model ages of 712 to 1589 Ma, and Yaguila Pb–Zn–Ag deposit has εHf(t) values from − 13.9 to − 1.3 with TDM(Hf)C model ages of 1216 to 2016 Ma. Combined with existing data from the Sharang Mo deposit, we conclude that the ore-forming intrusions associated with the skarn Fe and porphyry Mo deposits were derived from partial melting of metasomatized lithospheric mantle and rejuvenated lower crust beneath the central Lhasa subterrane, respectively. Melting of the ancient continental material was critical for the development of the Pb–Zn–Ag system. Therefore, it is likely that the source rocks play an important role in determining the metal endowment of intrusions formed during the initial stage of the India–Asia continental collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号