首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, interannual variations of the ocean dynamic height over the tropical Pacific are diagnosed using three-dimensional temperature and salinity fields from Argo profiles, with a focus on the...  相似文献   

2.
Using a gridded array for real-time geostrophic oceanography(Argo) program float dataset, the features of upperocean salinity stratification in the tropical Pacific Ocean are studied. The salinity component of the squared Brunt-V?is?l? frequency N~2( N_S~2) is used to represent salinity stratification. Layer-max N_S~2(LMN), defined as the N_S~2 maximum over the upper 300 m depth, and halocline depth(HD), defined as the depth where the N_S~2 maximum is located, are used to specifically describe the intensity of salinity stratification. Salinity stratification in the Topical Pacific Ocean has both spatial and temporal variability. Over the western and eastern equatorial Pacific, the LMN has a large magnitude with a shallow HD, and both have completely opposite distributions outside of the equatorial region. An obvious seasonal cycle in the LMN occurs in the north side of eastern equatorial Pacific and freshwater flux forcing dominates the seasonal variations, followed by subsurface forcing.At the eastern edge of the western Pacific warm pool around the dateline, significant interannual variation of salinity stratification occurs and is closely related to the El Ni?o Southern Oscillation event. When an El Ni?o event occurs, the precipitation anomaly freshens sea surface and the thermocline shoaling induced by the westerly wind anomaly lifts salty water upward, together contribute to the positive salinity stratification anomaly over the eastern edge of the warm pool. The interannual variations in ocean stratification can slightly affect the propagation of first baroclinic gravity waves.  相似文献   

3.
Limitations in sea surface salinity (SSS) observations and timescale separation methods have led to an incomplete picture of the mechanisms of SSS decadal variability in the tropical Pacific Ocean, where the El Niño Southern Oscillation (ENSO) dominates. Little is known regarding the roles of the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO) in the large-scale SSS variability over the tropical basin. A self-organizing map (SOM) clustering analysis is performed on the intrinsic mode function (IMF) maps, which are decomposed from SSS and other hydrological fields by ensemble empirical mode decomposition (EEMD), to extract their asymmetric features on decadal timescales over the tropical Pacific. For SSS, an anomalous pattern appeared during 1997 to 2004, a period referred to as the anomalous late 1990s, when strong freshening prevailed in large areas over the southwestern basin and moderate salinization occurred in the western equatorial Pacific. During this period, the precipitation and surface currents were simultaneously subjected to anomalous fluctuations: the precipitation dipole and zonal current divergence along the equator coincided with the SSS increase in the far western equatorial Pacific, while the weak zonal current convergence in the southwestern basin and large-scale southward meridional currents tended to induce SSS decreases there. The dominant decadal modes of SSS and sea surface temperature (SST) in the tropical Pacific both resemble the NPGO but occur predominantly during the negative and positive NPGO phases, respectively. The similarities between the NPGO and Central Pacific ENSO (CP-ENSO) in their power spectra and associated spatial patterns in the tropics imply their dynamical links; the correspondence between the NPGO-like patterns during negative (positive) phases and the CP La Niña (CP El Niño) patterns for SSS is also discussed.  相似文献   

4.
We investigated variability in the ocean surface-subsurface layer north of New Guinea using Triangle Trans-Ocean Buoy Network (TRITON) buoys at 2°N, 138°E and 0°N, 138°E during the period from October 1999 to July 2004. Both North and South Pacific waters were observed below the subsurface at these stations. The variability in the subsurface waters was particularly high at 2°N, 138°E. Clear interannual variability occurred near the surface; the water type differed before and after onset of the 2002–03 El Niño. Before summer 2001, water that appeared to be advected from the central equatorial Pacific occupied the near surface layer. After autumn 2001, waters advected by the New Guinea Coastal Current were observed near the surface. Intraseasonal and seasonal variations were also observed below the subsurface. With regard to seasonal variability, the salinity of the subsurface saline water, the South Pacific Tropical Water, was generally high during the boreal summer-autumn, when the New Guinea Coastal Undercurrent was strong. Intraseasonal fluctuations on a scale of 20 to 60 days were also seen and may have been associated with intrinsic oceanic variability, such as ocean eddies, near the stations. Ocean variability in the thermocline layer between 100 and 200 m greatly affects the surface dynamic height variability; water variability before 2001 and variability in the pycnocline depth after 2002 are important factors affecting the thermocline.  相似文献   

5.
利用2002—2015年ARGO网格化的温度、盐度数据, 结合卫星资料揭示了赤道东印度洋和孟加拉湾障碍层厚度的季节内和准半年变化特征, 探讨了其变化机制。结果表明, 障碍层厚度变化的两个高值区域出现在赤道东印度洋和孟加拉湾北部。在赤道区域, 障碍层同时受到等温层和混合层变化的影响, 5—7月和11—1月受西风驱动, Wyrtki急流携带阿拉伯海的高盐水与表层的淡水形成盐度层结, 同时西风驱动的下沉Kelvin波加深了等温层, 混合层与等温层分离, 障碍层形成。在湾内, 充沛的降雨和径流带来的大量淡水产生很强的盐度层结, 混合层全年都非常浅, 障碍层季节内变化和准半年变化主要受等温层深度变化的影响。上述两个区域障碍层变化存在关联, 季节内和准半年周期的赤道纬向风驱动的波动过程是它们存在联系的根本原因。赤道东印度洋地区的西风(东风)强迫出向东传的下沉(上升)的Kelvin波, 在苏门答腊岛西岸转变为沿岸Kelvin波向北传到孟加拉湾的东边界和北边界, 并且在缅甸的伊洛瓦底江三角洲顶部(95°E, 16°N)激发出向西的Rossby波, 造成湾内等温层深度的正(负)异常, 波动传播的速度决定了湾内的变化过程滞后于赤道区域1~2个月。  相似文献   

6.
Based on the concept of the Wiener&–Granger causality, a seasonal trivariate analysis of directional couplings between sea surface temperature variations in tropical latitudes of the Pacific, Atlantic, and Indian Oceans has been performed. These variations are related to significant modes of regional and global climatic variability. We have analyzed time series of monthly indices of Pacific Ocean processes of the El Ni&ño/Southern Oscillation (ENSO), equatorial Atlantic mode (EAM), and Indian Ocean Dipole (IOD)&—along with its western and eastern poles for the period of 1870&–2015. A scheme of interactions between the processes under study where coupling strength estimates are presented, along with estimates of the season of its maximal value and the coupling coefficient sign, has been developed. We have found the seasonal influences of ENSO on the western and eastern poles of IOD, the eastern pole of IOD on ENSO, EAM on ENSO, and IOD on EAM to be the most significant couplings.  相似文献   

7.
8.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

9.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

10.
2009/2010年El Ni(n)o事件变化特征及其机理   总被引:3,自引:2,他引:1  
应用TAO (Tropical Atmosphere Ocean project)热带太平洋实测海温和风场资料,分析研究了发生在2009/2010年的El Ni(n)o事件的变化特征,讨论了此次El Ni(n)o事件发生过程中,赤道东、西太平洋次表层异常海温的变化特征及其传播过程,特别是对赤道太平洋次表层异常海温变化的...  相似文献   

11.
In this study, we use existing observational datasets to evaluate 20th century climate simulations of the tropical Pacific. The emphasis of our work is decadal variability of the shallow meridional overturning circulation, which links the tropical and subtropical Pacific Ocean. In observations, this circulation is characterized by equatorward geostrophic volume transport convergence in the interior ocean pycnocline across 9°N and 9°S. Historical hydrographic data indicate that there has been a decreasing trend in this convergence over the period 1953–2001 of about 11 Sverdrup (1 Sv = 106 m3 s−1), with maximum decade-to-decade variations of 7–11 Sv. The transport time series is highly anti-correlated with sea surface temperature (SST) anomalies in the central and eastern tropical Pacific, implying that variations in meridional overturning circulation are directly linked to decadal variability and trends in tropical SST. These relationships are explored in 18 model simulations of 20th century climate from 14 state-of-the-art coupled climate models. Significant correlation exists between meridional volume transport convergence and tropical SST in the majority of the models over the last half century. However, the magnitude of transport variability on decadal time scales in the models is underestimated while at the same time modeled SST variations are more sensitive to that transport variability than in the observations. The effects of the meridional overturning circulation on SST trends in most the models is less clear. Most models show no trend in meridional transport convergence and underestimate the trend in eastern tropical Pacific SST. The eddy permitting MIROCH model is the only model that reasonably reproduces the observed trends in transport convergence, tropical Pacific SST, and SST gradient along the equator over the last half century. If the observed trends and those simulated in the MIROCH model are ultimately related to greenhouse gas forcing, these results suggest that the Bjerknes feedback, by affecting pycnocline transport convergences, may enhance warming that arises from anthropogenic forcing in the eastern tropical Pacific.  相似文献   

12.
13.
通过对1958-2001年的SODA海温资料进行经验正交函数分解,得到了太平洋-印度洋海温异常综合模态,该模态在海表及次表层的时空演变特征的分析表明,在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高)。该综合模态既有年际变化特征,还有年代际变化特征,在20世纪70年代中后期由以负指数为主转变为以正指数为主。对1958-2001年强正、负指数事件合成分析结果得知,综合模也存在着显著的年变化特征,在2-4月份偏弱,最强出现在10月份。西太平洋暖池次表层与赤道东太平洋次表层、赤道东印度洋次表层与西印度洋次表层有一种反位相的变化。次表层海温异常在东太平洋、西印度洋分别沿着南北纬10°左右向西太平洋、东印度洋传播并向赤道扩展,西太平洋、东印度洋的次表层海温异常则分别沿赤道向东太平洋、西印度洋传播汇聚。  相似文献   

14.
基于2004—2018年Argo (Array for Real-Time Geostrophic Oceanography)浮标观测的温度、盐度数据, 利用经验正交函数(EOF)分析和小波分析等方法对北印度洋(40°—105°E, 5°S—25°N)障碍层时空分布特征进行分析。结果显示: 北印度洋的东部常年存在障碍层, 而西部障碍层出现的概率相对较低; 较厚的障碍层出现在阿拉伯海东南部(67°—75°E, 3°—12°N)、孟加拉湾(82°—93°E, 11°—20°N)和赤道东印度洋(81°—102°E, 4°S—3°N)。阿拉伯海东南部和孟加拉湾障碍层厚度以年变化为主, 且呈同位相变化, 均为冬季最大, 夏季最小。赤道东印度洋区域则主要呈现半年周期变化, 在夏季和冬季各出现一次峰值。进一步分析表明, 孟加拉湾和赤道东印度洋障碍层厚度主要受等温层深度变化影响, 混合层深度变化对障碍层厚度变化的影响相对较小; 阿拉伯海障碍层厚度同时受等温层深度变化和混合层深度变化影响, 其中等温层深度变化对其影响更大。  相似文献   

15.
本文利用World Ocean Atlas 2013 (WOA13)和Simple Ocean Data Assimilation version 3.1.1 (SODA v3.3.1)温盐资料,分析印尼贯穿流(ITF)路径及所经印度尼西亚海及周边西太平洋、南海和东印度洋海域的层结强度(N2)和跃层特征的三维时空变化特征。结果表明,气候态下ITF 3条路径上跃层平均N2差异较小,其中中部路径平均值最大,为10?3.68 s?2,东部路径平均值最小,为10?3.71 s?2;各路径跃层深度和厚度存在明显差异,东部路径跃层深度和厚度最大,分别为124 m和192 m,中部次之,西部最小为99 m和143 m,并且印尼海的跃层深度和厚度平均值均小于其他海域。印尼海N2存在显著的季节变化和4~7 a的多年周期变化,其中年际变化可能主要受厄尔尼诺?南方涛动事件影响。季节上,在印尼海域内,ITF 3条路径夏季层结强度均小于冬季(北半球夏冬季),夏、冬两季N2差值最大可达到两个量级。1993?2015年的长期变化趋势显示,印尼海及周边大部分海域的层结强度呈现增强趋势,其中印度洋中部和哈马黑拉海23 a内最大层结增强近0.1个量级。  相似文献   

16.
本文利用Argo海水盐度资料、海流同化数据和同期大气再分析数据,探讨热带太平洋盐度趋势变化和相关动力过程。Argo资料显示,2015?2017年热带太平洋出现显著的盐度异常(SAE),这是改变长期趋势的主要原因,表现为表层显著淡化和次表层咸化特征。这种盐度异常具有明显的区域性特征和垂直结构的差异,体现在热带太平洋北部海区(NTP)和南太平洋辐合区(SPCZ)表层淡化,盐度最大变幅为0.71~0.92,淡化可以达到混合层底;热带太平洋南部海区(STP)次表层咸化,最大变幅为0.46,主要发生在温跃层附近,期间盐度异常沿着等位密面从西向东扩展。平流和挟卷是与SAE密切相关的海洋动力过程,两者在NTP淡化海域有着持续而较为显著的影响,在SPCZ淡化、STP咸化海域后期贡献也较大,其中盐度平流对热带太平洋海区盐度变化起主要贡献。NTP淡化海区表层淡水通量和STP咸化海区密度补偿引起的混合也是SAE的重要影响因素。  相似文献   

17.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   

18.
热带太平洋障碍层厚度的时空特征分析   总被引:2,自引:0,他引:2  
利用中国Argo实时数据中心提供的9 a(2000—2008年)网格化Argo剖面浮标温、盐数据(G Argo),分析热带太平洋障碍层厚度的气候态分布和低频变化特征。气候平均结果表明,较厚的障碍层主要出现于西太平洋暖池区,并有3条纬向障碍层带状分布,从暖池出发向东延伸至120°W,分别位于以15°N,5°N和12°S为中心的纬度带上。经验正交函数(EOF)基本模态分析表明,热带太平洋障碍层低频振荡以季节和年际变化为主,在季节尺度上主要表现为15°N和12°S障碍层纬度带呈反相变化,都在当地冬季最大,夏季最小;在年际尺度上则主要表现为暖池东边界附近障碍层与厄尔尼诺南方涛动(ENSO)相关的变化,以及暖池中部障碍层与热带准2 a周期振荡(TBO)相关的变化。  相似文献   

19.
《Ocean Modelling》2002,4(3-4):291-311
Coupled general circulation models (GCMs) have had weak El Niño/Southern Oscillation variability that has been attributed to a diffuse thermocline in the modeled equatorial Pacific Ocean. Consequently, there have been many attempts to improve the thermocline by developing new or improved ocean vertical mixing schemes. This paper investigates the influence of gradient Richardson Number-based vertical mixing scheme profiles in a tropical Pacific Ocean GCM. It has been common for vertical mixing schemes to be assessed in tropical Pacific Ocean models that have a limited latitudinal domain bounded by zonal walls with sponge layers. However, recent work has shown that warm surface water can accumulate in these models and stop them from achieving the observed sharp equatorial thermocline. The present model employs a parameterized wall heat transport scheme that prevents warm surface water from accumulating. Thus we are able assess the influence of vertical mixing profiles in an ocean model that does not allow warm surface water to accumulate and influence the thermocline.In this paper we evaluate the equatorial performance of three different Richardson number (Ri)-based vertical mixing profiles: an integer power (IP) profile based on the observations of Peters, Gregg and Toole; a form of the Pacanowski and Philander profile modified to have low background mixing; and the Max Planck Institute profile. With the accumulation of warm surface water prevented, each of these profiles is able to achieve a sharp thermocline. When compared with observations, the IP profile achieves a better upwelling velocity distribution. We also examine the influence on equatorial performance of very high mixing coefficients at low Richardson number, and of low background mixing coefficients.  相似文献   

20.
利用一个斜压两层海洋模式解析地研究了赤道东、西太平洋对信风张弛的响应特征.研究表明:当赤道上空偏东信风张弛或转为西风时,由于打破了海洋原来的平衡关系,结果在赤道东、西太平洋的温跃层附近产生了扰动并开始传播.西太平洋温跃层附近的扰动向东传播的速度远大于东太平洋扰动向西传播的速度,而且与东太平洋温跃层扰动向西传播的狭窄范围和小振幅相比,西太平洋温跃层扰动向东传播的范围和强度均很大.这与最近几次强厄尔尼诺增暖事件暖水从赤道西太平洋向赤道中、东太平洋的迅速传播特征是一致的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号