首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

2.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   

3.
The δ13c values of soil CO2 are less than that of atmosphere CO2 in the karst area. On the soil-air interface, the δ13c vlaues of soil CO2 decrease with the increase in soil depth; below the soil-air interface, the δ13c values of soil CO2 are invariable. The type of vegetation on the land surface has an influence on the δ13C values of soil CO2. Due to the activity of soil microbes, the δ13C values of soil CO2 are variable with seasonal change in ps. Isotopic tracer indicates that atmosphere CO2 has a great deal of contribution to soil CO2 at the lower parts of soil proflie. Project supported by the National Natural Science Foundation of China (Grant Nos. 49703048 and 49833002)  相似文献   

4.
This study presents baseline data for future geochemical monitoring of the active Tacaná volcano–hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/S (5.9 ± 0.5) and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc, Tacaná.  相似文献   

5.
In some volcanic systems, thoron and radon activity and CO2 flux, in soil and fumaroles, show a relationship between (220Rn/222Rn) and CO2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, known 222Rn (radon) and 220Rn (thoron), and a controllable percentage of CO2 in the carrier gas. Our results show that for every percentage of CO2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO2.  相似文献   

6.
Cook Inlet volcanoes that experienced an eruption between 1989 and 2006 had mean gas emission rates that were roughly an order of magnitude higher than at volcanoes where unrest stalled. For the six events studied, mean emission rates for eruptions were ∼13,000 t/d CO2 and 5200 t/d SO2, but only ∼1200 t/d CO2 and 500 t/d SO2 for non-eruptive events (‘failed eruptions’). Statistical analysis suggests degassing thresholds for eruption on the order of 1500 and 1000 t/d for CO2 and SO2, respectively. Emission rates greater than 4000 and 2000 t/d for CO2 and SO2, respectively, almost exclusively resulted during eruptive events (the only exception being two measurements at Fourpeaked). While this analysis could suggest that unerupted magmas have lower pre-eruptive volatile contents, we favor the explanations that either the amount of magma feeding actual eruptions is larger than that driving failed eruptions, or that magmas from failed eruptions experience less decompression such that the majority of H2O remains dissolved and thus insufficient permeability is produced to release the trapped volatile phase (or both). In the majority of unrest and eruption sequences, increases in CO2 emission relative to SO2 emission were observed early in the sequence. With time, all events converged to a common molar value of C/S between 0.5 and 2. These geochemical trends argue for roughly similar decompression histories until shallow levels are reached beneath the edifice (i.e., from 20–35 to ∼4–6 km) and perhaps roughly similar initial volatile contents in all cases. Early elevated CO2 levels that we find at these high-latitude, andesitic arc volcanoes have also been observed at mid-latitude, relatively snow-free, basaltic volcanoes such as Stromboli and Etna. Typically such patterns are attributed to injection and decompression of deep (CO2-rich) magma into a shallower chamber and open system degassing prior to eruption. Here we argue that the C/S trends probably represent tapping of vapor-saturated regions with high C/S, and then gradual degassing of remaining dissolved volatiles as the magma progresses toward the surface. At these volcanoes, however, C/S is often accentuated due to early preferential scrubbing of sulfur gases. The range of equilibrium degassing is consistent with the bulk degassing of a magma with initial CO2 and S of 0.6 and 0.2 wt.%, respectively, similar to what has been suggested for primitive Redoubt magmas.  相似文献   

7.
This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation 4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have D values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1–7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4–CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.  相似文献   

8.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

9.
Dajing Cu-Sn-Ag-Pb-Zn ore deposit, in the Inner Mongolia Autonomous Region of China, is a fissure-filling hydrothermal ore deposit. The δD values of quartz-hosted inclusion water are centered at −100%.– −130%.. The δ34S values of sulfide ore minerals and δ13 C values of carbonate gangue minerals vary from −0.3%. to 2.6%. and from −2.9%. to −7.0%., respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric-derived groundwater, and sulfur and carbon species from hypogene magma. Linear trends are exhibited on the gaseous H2O versus CO2 plot, and plots of CO, N2, CH4, and C2H6. It is shown by quantitative simulation that magma degassing cannot explain the linear trends. Hence, these linear trends are interpreted in terms of mixing of CO2-rich magmatic fluid with meteoric-derived groundwater. The groundwater circulated in Paleozoic sedimentary rocks and absorbed CO, N2, CH4, C2H6 and radiogenic Ar from organic matter. Cooling effects resulting from mixing have caused the precipitation of ore minerals.  相似文献   

10.
Physical, chemical and isotopic parameters were measured in fumaroles at the Vulcano crater and in drowned fumaroles near the beach. The data were used to define boundary conditions for possible conceptual models of the system.Crater fumaroles: time variations of CO2 and SO2 concentrations indicate mixing of saline gas-rich water with local fresh water. Cl/Br ratios of 300– 400 favour sea-water as a major source for Cl, Brand part of the water in the fumaroles. Cl concentrations and D values revealed, independently, amixing of 0.75 sea-water with 0.25 local freshwaterin furmarole F-5 during September 1982.Patterns of parameter correlation and mass balances reveal that CO2, S, NH3 and B originate from sources other than sea water. The CO2 value of 13C = – 2%o favours, at least partial, origin from decomposition of sedimentary rocks rather than mantle-derived material. Radiogenic4He(1.3 × lO–3 ccSTP/g water) and radiogenic40Ar(10.6 × 10–4 ccSTP/g water) are observed, (4He/40Ar)radiogenic = 1.2, well in the range of values observed in geothermal systems.Drowned fumaroles: strongly bubbling gas at a pond and at the beachappears to have the same origin and initial compositionas the crater fumaroles (2 km away). The fumarolic gas is modified by depletion of the reactive gases, caused by dissolution in shallow-water. Atmospheric Ne, Ar, Kr and Xe are addeden route, some radiogenic He and Ar are maintained. The Vulcano system seems to be strongly influenced by the contribution of sea-water and decomposition of sedimentary rocks. Evidence of magmatic contributions is mainly derived from heat.  相似文献   

11.
 Volcanic gas and condensate samples were collected in 1993–1994 from fumaroles of Koryaksky and Avachinsky, basaltic andesite volcanoes on the Kamchatka Peninsula near Petropavlovsk–Kamchatsky. The highest-temperature fumarolic discharges, 220  °C at Koryaksky and 473  °C at Avachinsky, are water-rich (940–985 mmol/mol of H2O) and have chemical and isotopic characteristics typical of Kamchatka–Kurile, high- and medium-temperature volcanic gases. The temperature and chemical and water isotopic compositions of the Koryaksky gases have not changed during the past 11 years. They represent an approximate 2 : 1 mixture of magmatic and meteoric end members. Low-temperature, near-boiling-point discharges of Avachinsky Volcano are water poor (≈880 mmol/mol); Their compositions have not changed since the 1991 eruption, and are suggested to be derived from partially condensed magmatic gases at shallow depth. Based on a simple model involving mixing and single-step steam separation, low water and high CO2 contents, as well as the observed Cl concentration and water isotopic composition in low-temperature discharges, are the result of near-surface boiling of a brine composed of the almost pure condensed magmatic gas. High methane content in low-temperature Avachinsky gases and the 220  °C Koryaksky fumarole, low C isotopic ratio in CO2 at Koryaksky (–11.8‰), and water isotope data suggest that the "meteoric" end member contains considerable amounts of the regional methane-rich thermal water discovered in the vicinity of both volcanoes. Received: 2 May 1996 / Accepted: 5 November 1996  相似文献   

12.
From the magmatic emanations differentiation point of view it is possible to calculate some ratios such as F/CO2, Cl/CO2, SO2/CO2, SO2/H2S, H2S/CO2 and CO2/N2 in the tumarolic gases for the forecasting of volcanic activity. In order to predict the cruptions of a volcano it is needed to select several fumaroles or hot springs having different regimes of variation of the above ratios. The study of some fumaroles composition at the Asama. Mihara, Kirishima and other volcanoes in Japan showed a close connection between volcanic gas compositions and state of the volcanoes.  相似文献   

13.
Significant changes in the helium and carbon isotopic composition of shallow thermal waters vs. gas and a crater fumarolic gas have been recorded at Stromboli prior and during the 2002–2003 eruption. The3He/4He ratios corrected for air contamination (Rc/Ra), and δ13C of fumarolic gases gradually increased from May to November 2002 before the eruption onset. These variations imply early degassing of a gas-rich magma at depth that likely fed both the intense Strombolian activity and small lava overflows recorded during that period. The lava effusion of late December 2002 was shortly preceded by a marked Rc/Ra decrease both in water and fumarolic gases. Comparison of He/CO2 and CH4/CO2 ratios in dissolved gas and with values rules out the Rc/Ra decrease due to an increasing input of radiogenic4He. The Rc/Ra decrease is attributed to the He isotope fractionation during rapid magma ascent and degassing. A new uprising of 3He-rich magma probably occurred in January to February 2003, when Rc/Ra ratios displayed the highest values in dissolved gases ever measured before (4.56 Rc/Ra). The increase in He/CO2 and CH4/CO2 ratios and decrease in δ13C of dissolved CO2 was recorded after the 5 April 2003 explosive paroxysm, likely caused by enhanced gas-water interaction inducing CO2 dissolution. No anomalous Rc/Ra values were recorded in the same period, when usual Strombolian activity gradually resumed.Editorial responsibility: H Shinohara  相似文献   

14.
 The 1982 eruption of El Chichón volcano ejected more than 1 km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500 m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges  / 20 kg/s of Cl-rich (∼15 000 mg/kg) and sulphur-poor ( / 200 mg/kg of SO4), almost neutral (pH up to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=–15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted (∼3000 mg/kg of Cl vs 24 030 mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200 mg/kg of SO4, vs 3550 mg/kg) with δ34S=0.5–4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100 kg/s of 71  °C Na–Ca–Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S due to anhydrite precipitation. Shallow ground waters emerging around the volcano from the thick cover of fresh pumice deposits (Red waters) are Ca–SO4–rich and have a negative oxygen isotopic shift, probably due to ongoing formation of clay at low temperatures. Received: 21 July 1997 / Accepted: 4 December 1997  相似文献   

15.
Lastarria volcano (25°10′ S, 68°31′ W; 5,697 m above sea level), located in the Central Andes Volcanic Zone (northern Chile), is characterized by four distinct fumarolic fields with outlet temperatures ranging between 80°C and 408°C as measured between May 2006–March 2008 and April–June 2009. Fumarolic gasses contain significant concentrations of high temperature gas compounds (i.e., SO2, HCl, HF, H2, and CO), and isotopic ratios (3He/4He, δ13C–CO2, δ18O–H2O, and δD–H2O) diagnostic of magmatic gas sources. Gas equilibria systematics, in both the H2O-H2-CO2-CO-CH4 and alkane–alkene C3 system, suggest that Lastarria fumarolic gasses emanate from a superheated vapor that is later cooled and condensed at relatively shallow depths. This two-stage process inhibits the formation of a continuous aquifer (e.g., horizontal liquid layer) at relatively shallow depth. Recent developments in the magmatic gas system may have enhanced the transfer and release of heat causing shallow aquifer vaporization. The consequent pressure increase and aquifer vaporization likely triggered the inflation events beginning in 2003 at the Lastarria volcano.  相似文献   

16.
Sulfur contents and δ34S values of Somma-Vesuvius magmas are consistent with syneruptive, open-system degassing at temperatures of 800–850°C for Plinian pumices and 1100–1200°C for lavas. The extent of degassing appears to be greater in lavas than in pumices. The key parameter controlling the 34S/32S ratio of Somma-Vesuvius volcanics is the average magma oxidation state, which generally varies from 0.85 to 1.20 Δ NNO units for lavas and from 1.20 to 1.40 Δ NNO units for pumices. Consequently, S contents and δ34S values of magmas constitute a potentially valuable tool in estimating their average redox conditions. The results of this study may help in risk mitigation when the Vesuvius magmatic system evolves toward eruptive conditions. Received: 20 January 1998 / Accepted: 5 May 1998  相似文献   

17.
The carbon isotope compositions of high- and ultrahigh-pressure eclogite and apatite separate from Huangzhen and Shima in SE Dabie Mountains were analyzed by EA-MS online technique. The δ13C values of the eclogites cover a wide range of -30.7‰ - +1.5‰, whereas those of apatites only have a small range of -28.1‰--21.0‰. Some of the eclogites with the high δ13C values suffered retrogressive alteration by CO2-bearing fluids. The low δ13C values of the apatites indicate that the eclogites contain surficial carbon of organic origin. It is concluded that protoliths of the eclogites were exposed to the surface of the Earth, and that the carbon-bearing fluid was depleted in 13C during the eclogite-facies metamorphism.  相似文献   

18.
Stable carbon and oxygen isotopes have been observed in dinosaur eggshell samples,identified as Macroolithus yaotunensis,collected in two sections of the Nanxiong Basin,Guangdong Province,South China.Multiple positiveδ18O perturbations that occurred during the K/T transition of about 150 ka suggest that there may have been at least three periods of the extreme dry climate with a mean annual air temperature over 27℃.δ13C ranges from -8.37‰ to -11.60‰ of the dinosaur eggshells,added to the metabolic enrichment of 16‰,may indicate that the dinosaurs represented by this type of eggshells probably consumed the plant species of C3 type with the δ13C values of -24.3‰- -27.6‰.Moreover,the trend toward more negative δ13C values of the eggshells during the K/T transition could be an indirect consequence of a lasting increase in atmospheric CO2 concentration.  相似文献   

19.
Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China   总被引:3,自引:0,他引:3  
This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) f...  相似文献   

20.
Soil CO2 concentration data were collected periodically from July 2001 to June 2005 from sampling site grids in two areas located on the lower flanks of Mt. Etna volcano (Paternò and Zafferana Etnea–Santa Venerina). Cluster analysis was performed on the acquired data in order to identify possible groups of sites where soil degassing could be fed by different sources. In both areas three clusters were recognised, whose average CO2 concentration values throughout the whole study period remained significantly different from one another. The clusters with the lowest CO2 concentrations showed time-averaged values ranging from 980 to 1,170 ppm vol, whereas those with intermediate CO2 concentrations showed time-averaged values ranging from 1,400 to 2,320 ppm vol, and those with the highest concentrations showed time-averaged values between 1,960 and 55,430 ppm vol. We attribute the lowest CO2 concentrations largely to a biogenic source of CO2. Conversely, the highest CO2 concentrations are attributed to a magmatic source, whereas the intermediate values are due to a variable mixing of the two sources described above. The spatial distribution of the CO2 values related to the magmatic source define a clear direction of anomalous degassing in the Zafferana Etnea–Santa Venerina area, which we attribute to the presence of a hidden fault, whereas in the Paternò area no such oriented anomalies were observed, probably because of the lower permeability of local soil. Time-series analysis shows that most of the variations observed in the soil CO2 data from both areas were related to changes in the volcanic activity of Mt. Etna. Seasonal influences were only observed in the time patterns of the clusters characterised by low CO2 concentrations, and no significant interdependence was found between soil CO2 concentrations and meteorological parameters. The largest observed temporal anomalies are interpreted as release of CO2 from magma batches that migrated from deeper to shallower portions of Etna’s feeder system. The pattern of occurrence of such episodes of anomalous gas release during the observation period was quite different between the two studied areas. This pattern highlighted an evident change in the mechanism of magma transport and storage within the volcano’s feeder system after June 2003, interpreted as magma accumulation into a shallow (<8 km depth) reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号