首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Samples of a natural amethyst, pulverized in air, and irradiated for gamma-ray doses from 0.14 to 70 kGy, have been investigated by powder electron paramagnetic resonance (EPR) spectroscopy from 90 to 294 K. The powder EPR spectra show that the surface Fe3+ species on the gamma-ray-irradiated quartz differ from its counterpart without irradiation in both the effective g value and the observed line shape, suggesting marked radiation effects. This suggestion is supported by quantitatively determined thermodynamic properties, magnetic susceptibility, relaxation times, and geometrical radius. In particular, the surface Fe3+ species on gamma-ray-irradiated quartz has larger Gibbs and activation energies than its non-irradiated counterpart, suggesting radiation-induced chemical reactions. The shorter phase-memory time (T m) but longer spin–lattice relaxation time (T 1) of the surface Fe3+ species on the gamma-ray-irradiated quartz than that without irradiation indicate stronger dipolar interactions in the former. Moreover, the calculated geometrical radius of the surface Fe3+ species on the gamma-ray-irradiated quartz is three orders of magnitude larger than that of its counterpart on the as-is sample. These results provide new insights into radiation-induced aerosol nucleation, with relevance to atmospheric cloud formation and global climate changes.  相似文献   

2.
Structural properties of natural jasper from Taroko Gorge (Taiwan) have been investigated by means of powder X-ray diffraction, electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopic techniques. The EPR spectrum at room temperature exhibits a sharp resonance signal at g = 2.007 and two more resonance signals centered at g ≈ 4.3 and 14.0. The resonance signal at g = 2.007 has been attributed to the E′ center and is related to a natural radiation-induced paramagnetic defect. Two more resonance signals centered at g ≈ 4.3 and 14.0 are characteristic of Fe3+ ions. The EPR spectra recorded at room temperature of jasper samples, heat-treated at temperatures ranging from 473 to 1,473 K exhibit marked temperature dependence. The resonance signal corresponding to E′ center disappears at elevated temperatures. A broad, intense resonance signal centered at g ≈ 2.0 appears at elevated temperatures. This resonance signal is a characteristic of Fe3+ ions, which are present as hematite in the jasper sample. The intensity of the resonance signal becomes dominant at elevated temperatures at ≥873 K, masking g ≈ 4.3 and g ≈ 14.0 resonance signals. The EPR spectra of jasper heat-treated at 673 K have been recorded at temperatures between 123 and 296 K. The population of spin levels (N) has been calculated for the broad g ≈ 2.0 resonance signal. It is found that N decreases with decreasing temperature. The linewidth (ΔH) of g ≈ 2.0 resonance signal of the heat-treated jasper is found to increase with decreasing temperature. This has been attributed to spin–spin interaction of the Fe3+ ions present in the form of hematite in the studied jasper sample.  相似文献   

3.
Single-crystal electron paramagnetic resonance (EPR) spectra of a natural citrine quartz without any artificial irradiation, measured at W-band frequencies (∼94 GHz) and temperatures of 77, 110 and 298 K, allow better characterization of three previously-reported Centers (#6, #7 and B) and discovery of three new defects (B′, C′ and G′). The W-band EPR spectra reveal that Centers #6 and #7 do not reside on twofold symmetry axes, contrary to results from a previous X-band EPR study. The W-band spectra also show that the previously reported Center B is a mixture of two defects (B and B′) with similar g matrices but different-sized 27Al hyperfine structures. Center C′ has similar principal g values to the previously reported Center C but is distinct from the latter by a larger 27Al hyperfine structure with splittings from 0.10 to 0.22 mT. Also, Center G′ has a similar g matrix to the previously reported Center G but a different 27Al hyperfine structure with splittings from 0.41 to 0.53 mT. These spin-Hamiltonian parameters, together with observed thermal properties and microwave-power dependence, suggest that Centers #6 and #7 probably represent O23− type defects. Centers B and B′ are probably superoxide radicals (O2) with the unpaired spin localized on the same pair of oxygen atoms around a missing Si atom but linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Similarly, Centers G and G′ are most likely superoxide radicals with the unpaired spin localized on another pair of oxygen atoms around a missing Si atom and linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Center C′ is probably an ozonide radical associated with a missing Si atom and linked to a substitutional Al3+ ion at the neighboring tetrahedral site. This study exemplifies the value of  high-frequency EPR for discrimination of  similar defect centers and determination of  small local structural distortions that are often difficult to resolve in conventional  X- and Q-band EPR studies.  相似文献   

4.
Comparison of polarized optical absorption spectra of natural Ca-rich diopsides and synthetic NaCrSi2O6 and LiCrSi2O6 clinopyroxenes, evidences as vivid similarities, as noticeable differences. The similarities reflect the fact that in all cases Cr3+ enters the small octahedral M1-site of the clinopyroxene structure. The differences are due to some iron content in the natural samples causing broad intense near infrared bands of electronic spin-allowed dd transitions of Fe2+(M1, M2) and intervalence Fe2+/Fe3+ charge-transfer transition, and by different symmetry and different local crystal fields strength of Cr3+ in the crystal structures. The positions of the spin-allowed bands of Cr3+, especially of the low energy one caused by the electronic 4 A 2g → 2 T 1g transition, are found to be in accordance with mean M1–O distances. The local relaxation parameter ε calculated for limCr 3+ → 0 from the spectra and interatomic á Cr - O ñ \left\langle {Cr - O} \right\rangle and á Mg - O ñ \left\langle {Mg - O} \right\rangle distances yields a very high value, 0.96, indicating that in the clinopyroxene structure the local lattice relaxation around the “guest” ion, Cr3+, deviates greatly from the “diffraction” value, ε = 0, than in any other known Cr3+-bearing systems studied so far. Under pressure the spin-allowed bands of Cr3+ shift to higher energies and decrease in intensity quite in accordance with the crystal field theoretical expectations, while the spin-forbidden absorption lines remain practically unshifted, but also undergo a strong weakening. There is no evident dependence of the Racah parameter B of Cr3+ reflecting the covalence of the oxygen-chromium bond under pressure: within the uncertainty of determination it may be regarded as practically constant. The values of CrO6 octahedral modulus, k\textpoly\textloc k_{\text{poly}}^{\text{loc}} , derived from high-pressure spectra of natural chromium diopside and synthetic NaCrSi2O6 kosmochlor are very close, ~203 and ~196 GPa, respectively, being, however, nearly twice higher than that of MgO6 octahedron in diopside, 105(4) GPa, obtained by Thompson and Downs (2008). Such a strong stiffening of the structural octahedron, i.e. twice higher value of k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} comparing with that of k\textMg2 + \textloc k_{{{\text{Mg}}^{2 + } }}^{\text{loc}} , may be caused by simultaneous substitution of Ca2+ by larger Na+ in the neighboring M2 sites at so-called jadeite-coupled substitution Mg2+ + Ca2+ → Cr3+ + Na+. It is also remarkable that the values of CrO6 octahedral modulus of NaCrSi2O6 kosmochlor obtained here are nearly twice larger than that of 90(16) GPa, evaluated by high-pressure X-ray structural refinement by Origlieri et al. (2003). Taking into account that the overall compressibility of the clinopyroxene structure should mainly be due to the compressibility of M1- and M2-sites, our k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} -value, ~196 GPa, looks much more consistent with the bulk modulus value, 134(1) GPa.  相似文献   

5.
Single-crystal W-band electron paramagnetic resonance (EPR) spectra of an electron-irradiated quartz, measured at room temperature, 110 and 77 K, disclose three previously reported hole centers (#1, G and an ozonide radical). The W-band EPR spectra of these three centers clearly resolve six magnetically nonequivalent sites each, whereas previous X- and Q-band EPR studies reported Centers #1 and the ozonide radical to consist of only three symmetry-related components and interpreted them to reside on twofold symmetry axes in the quartz structure. The calculated g matrices of Center #1 and the ozonide radical show that deviations from twofold symmetry axes are <10°, which are probably attributable to distortion related to neighboring charge compensating ions. The W-band EPR spectra of Center G not only result in improved g matrices but also allow quantitative determination of the nuclear hyperfine (A) and quadrupole (P) matrices of its 27Al hyperfine structure that was incompletely resolved before. In particular, the g-maximum and g-minimum principal axes of Center G are approximately along two pairs of O–O edges of the SiO4 tetrahedron, while the unique A principal axis is approximately along a Si–Si direction. These new spin-Hamiltonian parameters suggest that Center G most likely involves trapping of a hole between two oxygen atoms related to a silicon vacancy and stabilized by an Al3+ ion in the neighboring tetrahedron (hence an O2n−–Al3+ defect, where n is either 1 or 3).  相似文献   

6.
The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (ΔG) for the forward reaction is sensitive to dihydroxyaromatic structure, pH, and concentrations of reactants and products. Here, we address the back reaction, benzoquinone reduction by FeII. Rates markedly increase with increasing pH, in accord with increases in ΔG. Ring substituents that raise the potential of the p-benzoquinone/hydroquinone half reaction raise reaction rates: –OCH3 < –CH3 < –C6H5 < –H < –Cl. p-Naphthoquinone, with a reduction potential lower than the five substituted p-benzoquinones just listed, yields the lowest reaction rates. The complexity of the reaction is reflected in lag periods and less-pronounced S-shaped time course curves. Benzoquinone reduction by FeII may be an important link in networks of electron transport taking place in suboxic and anoxic environments.  相似文献   

7.
A natural datolite CaBSiO4(OH) (Bergen Hill, NJ, USA), before and after gamma-ray irradiation (up to ~70 kGy), has been investigated by single-crystal and powder electron paramagnetic resonance (EPR) spectroscopy from 10 to 295 K. EPR spectra of gamma-ray-irradiated datolite show the presence of a boron-associated oxygen hole center (BOHC) and an atomic hydrogen center (H0), both of which grow with increasing radiation dose. The principal g and A(11B) values of the BOHC at 10 K are: g 1 = 2.04817(3), g 2 = 2.01179(2), g 3 = 2.00310(2), A 1 = −0.401(7) mT, A 2 = −0.906(2) mT, A 3 = −0.985(2) mT, with the orientations of the g 1 and A 1 axes approximately along the B–OH bond direction. These experimental results suggest that the BOHC represents hole trapping on the hydroxyl oxygen atom after the removal of the proton (i.e. a [BO4]0 center): via a reaction O3BOH → O3BO· + H0, where · denotes the unpaired electron. Density functional theory (DFT) calculations (CRYSTAL06, B3PW, all-electron basis sets, and 1 × 2 × 2 supercell) support the proposed structural model and yield the following 11B hyperfine coupling constants: A 1 = −0.429 mT, A 2 = −0.901 mT, A 3 = −0.954 mT, in excellent agreement with the experimental results. The [BO4]0 center undergoes the onset of thermal decay at ~200°C and is completely annealed out at 375°C but can be restored readily by gamma-ray irradiation. Isothermal annealing experiments show that the [BO4]0 center exhibits a second-order thermal decay with an activation energy of 0.96 eV. The confirmation of the [BO4]0 center (and its formation from the O3BOH precursor) in datolite has implications for not only understanding of BOHCs in alkali borosilicate glasses but also their applications to nuclear waste disposal.  相似文献   

8.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

9.
Natural specimens of green gemological euclase (chemical formula BeAlSiO4(OH)) from Brazil were investigated by electron paramagnetic resonance (EPR) and optical absorption. In addition to iron-related EPR spectra, analyzed recently in blue and colorless euclase, chromium and vanadium-related EPR spectra were also detected in green euclase. Their role as color causing centers is discussed. The results indicate that Cr3+ ions substitute for Al3+ ions in the euclase structure. The EPR rotation patterns of Cr3+ with electron spin S = 3/2 were analyzed with monoclinic spin Hamiltonian leading to the parameters of g xx , g yy and g zz equal to 2.018, 2.001 and 1.956 and electronic fine structure parameters of D = −8.27 GHz and E = 1.11 GHz, respectively, with high asymmetry ratio E/D = 0.13. For the vanadium-related EPR spectra the situation is different. It is concluded that vanadium is incorporated as the vanadyl radical VO2+ with electron spin S = 1/2 with nearly axial spin Hamiltonian parameters gzz = 1.9447, g xx  = 1.9740 g yy  = 1.9669 and axial hyperfine interactions due to the nuclear spin I = 7/2 of the 51V isotope leading to A zz  = 502 MHz, A xx  = 150 MHz and A yy  = 163 MHz. The green color of euclase is caused by two strong broad absorption bands centered at 17,185 and 24,345 cm−1 which are attributed to the 4A2g4T2g, 4T1g transitions of Cr3+, respectively. Vanadyl radicals may introduce some absorption bands centered in the near infrared with tail extending into the visible spectral range.  相似文献   

10.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

11.
Samples of natural sodalite, Na8Al6Si6O24Cl2, submitted to gamma irradiation and to thermal treatments, have been investigated using the thermoluminescence (TL) and electron paramagnetic resonance (EPR) techniques. Both, natural and heat-treated samples at 500°C in air for 30 min, present an EPR signal around g = 2.01132 attributed to oxygen hole centers. The EPR spectra of irradiated samples show an intense line at g = 2.0008 superimposed by a hyperfine multiplet of 11 lines due to an O ion in an intermediate position with respect to two adjacent Al nuclei. In the TL measurements, the samples were annealed at 500°C for 30 min and then irradiated with γ doses varying from 0.001 to 20 kGy. All the samples have shown TL peaks at 110, 230, 270, 365, and 445°C. A correlation between the EPR g = 2.01132 line and the 365°C TL peak was observed. A TL model is proposed in which a Na+ ion acts as a charge compensator when an Al3+ ion replaces a Si4+ lattice ion. The γ ray destruction of the Al–Na complex provides an electron trapped at the Na and a hole trapped at a non-bridging oxygen ion adjacent to the Al3+ ion.  相似文献   

12.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

13.
This study presents the first unequivocal identification of natural radiation-induced defects in illites. Middle Proterozoic illites related to unconformity-type uranium deposits of Canada and Australia were studied using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. The saturation behaviour of EPR spectra as a function of power demonstrates that native defects of illites are different from those known in other clays as kaolinite, dickite or smectite. Q-band spectra indicate the presence of several––at least two––native defects. The EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g  = 2.032 and g  = 1.993. The corresponding defect is named as Ai center. The study of oriented specimen confirms the strong anisotropy, and shows that the main defect has its g component perpendicular to the (ab) plane of illite. These defects in illite correspond to electron holes located on oxygen atoms of the structure and likely associated to Si, according to the lack of hyperfine structure. The Ai center in illite has similar EPR parameters to the A center in kaolinite and dickite. The isochronal annealing data suggest that illite can be used as a dosimeter in the geosphere. However, the determination of half-life and activation energy of the Ai center requires additional work.  相似文献   

14.
Polarized near-UV spectra have been recorded on 20 μm diameter spots on oriented crystals of microprobe-analyzed olivines from Baikhal Rift, Fa8.8 (I) and Seberget, Fa9.3 (II), which have formed under different fO2 and, therefore, are expected to contain Fe3+-bearing point defects in different concentrations. These should be reflected in the UV-spectra of such minerals (Cemic et al. 1986). The spectra obtained confirm these predictions: The difference in α Y, 26500 in both samples indicates a difference in Fe3+-site fractions of ΔXFe. = 1.78-10−4, which may be related to an fO2 about ten times higher for the formation of olivine II compared to I.  相似文献   

15.
The thermal stabilities and decay kinetics of three peroxy radicals (Centers #1, B and B′) and three other radiation-induced defects (#3, C′ and E1′) in natural quartz from the high-grade McArthur River uranium deposit (Athabasca basin, Canada) have been investigated by isochronal and isothermal annealing experiments and electron paramagnetic resonance (EPR) spectroscopy. Single-crystal EPR spectra of isochronally (2 h) annealed quartz show that these centers all grow in intensity to 280°C and then decay with further increase in temperature, but their disappearance temperatures differ markedly and depend on the initial concentrations (e.g., Center #1 in a dark smoky quartz is annealed out at 380°C, B and B′ at 420°C and #3 and C′ at 580°C). The isothermal decay processes of these centers are all of the second order type. The calculated activation energies for the peroxy radicals [#1 and B + B′ at 0.36 (9) and 0.83 (8) eV, respectively] are smaller than those of Centers #3, C′ and E1′ [1.09 (8), 1.24 (8) and 1.45 (7) eV, respectively]. Gamma-ray irradiations of thermally bleached quartz restore a fraction of the peroxy radicals, suggesting that their diamagnetic precursors are stable up to at least 800°C. The unusual decay characteristics of “peroxy radicals” in quartz reported in the literature are shown to most likely arise from multiple radiation-induced defects. These results have implications for not only applications of peroxy radicals in quartz for EPR dating but also better understanding of thermoluminescence and cathodoluminescence spectra of this mineral.  相似文献   

16.
Mössbauer spectra (MS) of blue, green and yellow beryl (ideally Be3Al2Si6O18) containing approximately 1% of iron were obtained at 295 and 500 K. Room temperature (RT) spectra of both blue and green samples showed the presence of an asymmetric Fe2+ doublet (ΔE Q~2.7 mm/s, δ~1.1 mm/s), with a very broad low-velocity peak. There is no clear evidence for the presence of a ferric component. The MS of the yellow sample at RT consists of an intense central absorption with parameters typical for Fe3+E Q~0.4 mm/s, δ~0.29 mm/s), plus an apparently symmetrical Fe2+ doublet. This sample acquires a light-blue shade upon heating in air at about 620 K. Thermal treatments at high temperatures caused no significant changes in the MS, but the green and yellow beryl acquire a blue colour. All these results are interpreted in relation to the existence of channel water and the distribution of iron among the available crystallographic sites.  相似文献   

17.
Sogdianite, a double-ring silicate of composition ( \textZr0. 7 6 \textTi0. 3 84 + \textFe0. 7 33 + \textAl0.13 )\Upsigma = 2 ( \square 1. 1 5 \textNa0. 8 5 )\Upsigma = 2 \textK[\textLi 3 \textSi 1 2 \textO 30 ] ( {\text{Zr}}_{0. 7 6} {\text{Ti}}_{0. 3 8}^{4 + } {\text{Fe}}_{0. 7 3}^{3 + } {\text{Al}}_{0.13} )_{\Upsigma = 2} \left( {\square_{ 1. 1 5} {\text{Na}}_{0. 8 5} } \right)_{\Upsigma = 2} {\text{K}}[{\text{Li}}_{ 3} {\text{Si}}_{ 1 2} {\text{O}}_{ 30} ] from Dara-i-Pioz, Tadjikistan, was studied by the combined application of 57Fe M?ssbauer spectroscopy and electronic structure calculations. The M?ssbauer spectrum confirms published microprobe and X-ray single-crystal diffraction results that indicate that Fe3+ is located at the octahedral A-site and that no Fe2+ is present. Both the measured and calculated quadrupole splitting, ΔE Q, for Fe3+ are virtually 0 mm s−1. Such a value is unusually small for a silicate and it is the same as the ΔE Q value for Fe3+ in structurally related sugilite. This result is traced back to the nearly regular octahedral coordination geometry corresponding to a very symmetric electric field gradient around Fe3+. A crystal chemical interpretation for the regular octahedral geometry and the resulting low ΔE Q value for Fe3+ in the M?ssbauer spectrum of sogdianite is that structural strain is largely “taken up” by weak Li–O bonds permitting highly distorted LiO4 tetrahedra. Weak Li–O bonding allows the edge-shared more strongly bonded Fe3+O6 octahedra to remain regular in geometry. This may be a typical property for all double-ring silicates with tetrahedrally coordinated Li.  相似文献   

18.
Recent identification of elevated excess 210Pb (≤302.6 mBq L−1) and 137Cs (≤111.3 mBq L−1) activity in drinking water wells up to 20 m depth indicates some transport of airborne radionuclide fallout beyond soils in the Shaker Village catchment, Maine. Estimated airborne mass loading 210Pbex fluxes of about 0.9 mBq m−3, canvass this headwater catchment and may be sufficient to pose risks to unprotected shallow wells. Inventories of 210Pbex and 137Cs in pond sediments indicate maximum median activities of 943 mBq g−1 and 40.0 mBq g−1, respectively. Calculated 210Pbex fluxes in the catchment soils range from 0.62–0.78 Bq cm−2 year−1 and yield a mean residence time of near 140 years. Measured 137Cs activity up to 51.1 mBq g−1 occurs in sediments at least to 5 m depth. Assumed particle transport in groundwater with apparent 85Kr ages less than 5 years BP (2005) may explain the correlation between these particle-reactive radionuclides and elevated activity in some drinking water wells.  相似文献   

19.
The dependence of water concentration in synthetic (Mg, Fe2+)-cordierite on the composition of the solid solution was examined in experiments that lasted for 10 days at = 200–230 MPa, t = 600–700°C, and oxygen fugacity corresponding to the Fe-FeO buffer. Mass spectrometric data indicate that the dependence of water concentration in cordierite on its Fe mole fraction Fe2+/(Fe2+ + Mg) has maxima at compositions with F = 0.2–0.3. IR diffuse reflectance spectroscopic data and data on the structural setting of H2O molecules in the structural channels of alkali-free (Mg, Fe2+)-cordierite indicate that the H-H vector of some H2O molecules (H2O-II) is perpendicular to [001] of the crystal. The dependence of the magnetic properties of synthetic (Mg, Fe2+)-cordierite was studied by static magnetization technique at 5–300 K in an external magnetic field up to 20 kOe in strength.  相似文献   

20.
2p (L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3d n → 2p 5 3d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2p XAS in a dilute system, the Fe L-edge spectrum of amethyst (α-SiO2: Fe) has been recorded; this spectrum shows that ~68% of the Fe in amethyst is Fe2+, and ~32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号