首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
高黎贡构造带花岗岩的年代学和地球化学及其构造意义   总被引:6,自引:16,他引:6  
产于高黎贡山脉的花岗岩(简称高黎贡花岗岩)记录中生代以来高黎贡构造带形成、演化的全部过程,高黎贡花岗岩的成因研究对于查明东喜马拉雅构造结的形成和演化乃至整个冈底斯地块的演化过程具有重要意义.高黎贡花岗岩为一套由黑云母二长花岗岩、二云母二长花岗岩、花岗岩组成的花岗质杂岩体,空间上构成一条南北向分布的挟持于怒江剪切带和龙川江剪切带之间狭长透镜体.地球化学特征研究揭示,高黎贡花岗岩为高钾钙碱性、过铝-强过铝花岗岩,其岩浆来源于中、下地壳前寒武纪变质岩的深熔作用.花岗岩源区成分不均一,以变质硬砂岩为主,并含有变质玄武岩,形成于岛弧-陆陆碰撞环境.SHRIMP锆石U-Pb定年表明,高黎贡花岗岩形成于早白垩世晚期(126~118Ma),其年龄、地球化学特征与拉萨地块北缘花岗岩一致,说明它为冈底斯构造岩浆岩带的东延部分,是中特提斯怒江洋洋壳向南俯冲和海洋闭合过程的岩浆响应,而与新特提斯雅鲁藏布江洋的演化无关.  相似文献   

2.
冈底斯岩浆弧的形成与演化   总被引:10,自引:6,他引:4  
位于青藏高原南部的冈底斯岩浆弧是新特提斯大洋岩石圈长期俯冲导致的中生代岩浆作用的产物,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,也是研究增生与碰撞造山作用和大陆地壳生长与再造的天然实验室。基于岩浆、变质和成矿作用研究成果,我们将冈底斯弧的形成与演化历史划分5期,即新特提斯洋早期俯冲、新特提斯洋中脊俯冲、新特提斯洋晚期俯冲、印度-亚洲大陆碰撞和后碰撞期。第1期发生在晚白垩世之前,是以新特提斯洋岩石圈的长期俯冲、地幔楔部分熔融形成钙碱性弧岩浆岩为特征。长期的幔源岩浆作用导致了整个冈底斯弧发生显著的新生地壳生长,并在岩浆弧西部形成了一个大型的与俯冲相关的斑岩型铜矿。第2期发生在晚白垩世,活动的新特提斯洋中脊发生俯冲,软流软圈沿板片窗上涌,使上升的软流圈、地幔楔和俯冲洋壳发生部分熔融,导致了强烈的幔源岩浆作用和显著的新生地壳生长与加厚,并以不同类型和不同成分岩浆岩的同时发育和伴随的高温变质作用为特征。第3期发生在晚白垩世晚期,为新特提斯洋脊俯冲后残余大洋岩石圈的俯冲期,以正常的弧型岩浆作用为特征。第4期发生在古新世至中始新世,伴随印度与亚洲大陆的碰撞,俯冲的新特提斯洋岩石圈回转和断离引起软流圈上涌,诱发了强烈的幔源岩浆作用。在此阶段,大陆碰撞导致的地壳挤压缩短和幔源岩浆的底侵与增生,使冈底斯弧经历了显著的地壳生长和加厚,新生和古老加厚下地壳的高压、高温变质和部分熔融,幔源和壳源岩浆岩的共生和强烈的岩浆混合。所形成的I型花岗岩大多继承了新生地壳弧型岩浆岩的化学成分,并多显出埃达克岩的地球化学特征。在岩浆弧北部形成了一系列与起源于古老地壳花岗岩相关的Pb-Zn矿床。第5期发生在晚渐新世到早-中中新世的后碰撞挤压过程中,以地壳的继续加厚,加厚下地壳的高温变质、部分熔融和埃达克质岩石的形成为特征。在岩浆弧东段南部形成了一系列与起源于新生加厚下地壳埃达克质岩石相关的斑岩型Cu-Au-Mo矿。冈底斯带的多期岩浆、变质与成矿作用为其从新特提斯洋俯冲到印度-亚洲大陆碰撞的构造演化提供了重要限定。  相似文献   

3.
冈底斯带晚中生代构造演化模式一直存在争议。此次研究了中冈底斯带扎布耶茶卡北部区域则弄群火山岩的野外特 征和锆石U-Pb年龄。锆石U-Pb定年结果表明,扎布耶茶卡北部则弄群火山岩主要喷发于154.2~142.1 Ma。研究首次获得 晚侏罗世的则弄群火山岩年龄为154 Ma,比前人提出的则弄群火山岩浆活动起始时间(130 Ma) 提前了24 Ma,据此将则 弄群的时代定为晚侏罗世至早白垩世。根据研究获得的最新年代学数据,结合冈底斯带火山岩的前人研究资料,显示冈底 斯带中生代弧火山岩具有从南向北逐渐年轻的趋势。因此,最早期南冈底斯弧中生代火山岩可能与新特提斯洋板片北向俯 冲有关,晚侏罗世至早白垩世的中冈底斯带弧火山岩受到了新特提斯洋板片北向俯冲和班公湖-怒江洋板片南向俯冲的双 重影响,早白垩世中期的北冈底斯带弧火山岩则与班公湖-怒江洋板片的南向俯冲密切相关。研究成果为冈底斯带晚中生 代构造演化模式提供了火山岩方面的新证据。  相似文献   

4.
在一定条件下,花岗岩对于研究古大洋板块俯冲消减及陆-陆碰撞等板块演化过程具有重要的意义.拢布村花岗岩体位于西藏南冈底斯带中段,有关南冈底斯带花岗岩类形成年代仍存在不同认识.通过LA-ICP-MS锆石U-Pb测年获得拢布村花岗岩的形成年龄为157.0Ma±2.9Ma,表明南冈底斯带存在晚侏罗世岩浆活动.拢布村花岗岩富集Rb、Ba、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,显示出岛弧岩浆岩的特征,指示晚侏罗世南冈底斯带存在新特提斯洋北向欧亚大陆的早期俯冲运动.研究表明,拢布村花岗岩为洋壳板块俯冲消减作用背景之下上覆地幔楔部分熔融的产物.  相似文献   

5.
李文坛  张宁  张泽明 《地质学报》2022,96(3):881-896
青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈俯冲过程中。在冈底斯岩浆弧东段出露的中—高级变质岩代表岩浆弧的中- 下地壳组成,是探索大陆地壳形成与演化的窗口。作为这些中—高级变质岩原岩主要组成部分的里龙岩基由晚白垩世辉长岩、闪长岩和花岗岩组成。本文对由里龙岩基上部花岗岩变质形成的片麻岩进行了岩石学与年代学研究,探讨其原岩时代、成因、变质作用条件、时间及构造意义。所研究的片麻岩由斜长石、钾长石、石英、黑云母、绿帘石和白云母组成,含或不含角闪石,SiO2含量为61. 94%~74. 39%,铝饱和指数(A/CNK)为0. 89~1. 03,属于高钾钙碱性、准铝质到弱过铝质岩石。这些岩石具有轻稀土元素富集和重稀土元素亏损的配分模式,并表现为富集大离子亲石元素和相对亏损高场强元素的特征。片麻岩中的锆石由继承的岩浆核和变质边组成,岩浆核获得了92~86 Ma的结晶年龄,变质边获得了81~72 Ma的变质年龄,锆石岩浆核具正的εHf(t)值(+10. 2~+12. 1)。这些片麻岩的变质条件为740~750 ℃和0. 5~0. 6 GPa。本文和现有研究表明,里龙岩基是形成在晚白垩世新特提斯洋俯冲过程中具有亏损地幔地球化学特征的弧岩浆岩,经历了强烈的结晶分异作用,所研究的花岗岩是残余岩浆结晶产物。笔者认为,晚白垩世早期新特提斯洋中脊俯冲过程中巨量幔源岩浆的增生导致了冈底斯弧发生了显著的新生地壳生长;在晚白垩世晚期残余新特提斯洋岩石圈平缓俯冲过程中的弧地壳强烈缩短加厚使里龙岩基被运移到中下地壳,并发生了中—高级变质和部分熔融。冈底斯岩浆弧新生地壳在大洋岩石圈俯冲晚期经历了明显再造。  相似文献   

6.
班公湖—怒江断裂带东段的构造特征   总被引:2,自引:0,他引:2  
班公湖-怒江断裂带是青藏高原羌塘-唐古拉板块与冈底斯-念青唐古拉板块的缝合带。由韧性推覆剪切带,逆冲断裂带,断陷盆地构造带和推覆构造带,以及蛇绿岩,蛇绿混杂岩,深海复理石,古生代变质岩和燕山期花岗岩侵入体等组合而成,是复杂的断裂系统,主要经历了晚三叠世-中侏罗世洋盆的形成和扩张,晚侏我世洋壳俯冲和岛弧形成,早白垩世-晚白垩世早期弧-陆碰撞汇聚和喜马拉期断陷盆地形成,逆冲推覆构造发育的复杂演化历史过  相似文献   

7.
藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成   总被引:2,自引:0,他引:2  
在藏南"南冈底斯岩浆弧"的北侧,发育一个白垩纪碳酸盐-碎屑岩组成的弧后盆地,盆地基底为早侏罗纪火山岩,其上被大面积晚白垩世-古新世林子宗群火山岩(62~45Ma)角度不整合覆盖,以及65~40Ma花岗岩基的侵位。南冈底斯弧后盆地的主要地壳变形表现为:在自北向南剪切应变下,以早侏罗世火山岩与晚侏罗-白垩世沉积岩之间的冈底斯滑脱带(GD)为主要构造底面,与上部白垩纪地层的强烈褶皱和铲式构造一起组成的"滑脱-褶皱"构造样式。研究表明,弧后盆地的滑脱-褶皱构造是90~62Ma期间与新特提斯大洋岩石圈板片俯冲有关的弧后盆地地壳缩短、加厚和造山作用的表征。大面积存在的冈底斯林子宗火山岩与其下部地层的角度不整合是一种"火山披盖式"的不整合,说明冈底斯弧后盆地经历伸展到地壳缩短变形、造山隆升和剥蚀夷平的演化过程,标志洋-陆俯冲到陆-陆碰撞的转换。提出南冈底斯初始高原在晚白垩世俯冲条件下开始形成的新认识。  相似文献   

8.
冈底斯岩浆弧中发育了1条重要的韧性剪切带,为深入了解该韧性剪切带上变形花岗岩的成因、变形作用及其性质,对冈底斯南缘拉隆地区变形花岗岩开展了地球化学、变形构造和锆石U-Pb同位素年代学研究。通过对冈底斯南缘拉隆地区出露的变形花岗岩进行实测地质剖面测制及野外地质填图,发现变形花岗岩呈近EW向展布,北侧与中生代麻木下组呈断层接触,其余被第四系覆盖。岩石类型主要为英云闪长岩,属于高硅钙碱性系列岩石。SiO2含量为66.2%~71.0%,平均值为68.3%,全碱(Na2O+K2O)含量、Al2O3含量和MgO含量均较高,轻稀土元素总量(∑LREE)大于重稀土元素总量(∑HREE),Rb、Th等大离子亲石元素富集,Ta、Zr、Nb等高场强元素亏损,Sr含量高,Y含量低,Sr/Y为73.02~99.05,整体显示具有埃达克质岩石的特征属性。变形花岗岩LA-ICP-MS锆石U-Pb年龄为(83.56±0.83) Ma,为晚白垩世,代表了其岩浆结晶形成的年龄。变形花岗岩主要为新特提斯洋壳向北俯冲削减背景下,增厚的下地壳部分熔融形成的产物,在中新世28~13 Ma遭受了近EW向左旋剪切、向北滑覆的韧性剪切变形作用。  相似文献   

9.
李中尧  丁慧霞  袁玥  张泽明 《岩石学报》2021,37(11):3445-3463
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯洋俯冲过程中,并在印度与欧亚大陆碰撞过程中叠加了新生代岩浆作用和变质作用。冈底斯岩浆弧东段出露的中、新生代变质岩是研究其深部组成与形成演化的理想窗口。本文对冈底斯东段米林田兴村地区的变沉积岩,即石榴夕线黑云片岩、含石榴钙硅酸盐岩、黑云斜长片麻岩和大理岩进行了岩石学和锆石U-Pb年代学研究。研究结果表明,石榴夕线黑云片岩由夕线石、黑云母、石榴石、斜长石、钾长石、石英和钛铁矿组成,经历了中压麻粒岩相变质作用,变质条件为810~820℃和6.4~7.8kbar。锆石年代学研究表明,石榴夕线黑云片岩、含石榴钙硅酸盐岩和大理岩经历了87~83Ma的变质作用。本文和现有研究表明,冈底斯弧东段林芝和米林地区的高压麻粒岩相变质岩分布区代表该岩浆弧的下地壳,而包括本文研究点在内的中压麻粒岩相到角闪岩相变质岩分布区为其中地壳组成部分。本文认为晚白垩世大体积幔源岩浆的注入和随后的新特提斯大洋岩石圈平俯冲,导致了冈底斯岩浆弧地壳的生长、加厚和底冲,使上地壳的沉积岩和岩浆岩运移到中-下地壳,并经历了高温变质与部分熔融,形成了分布在上地壳的花岗岩。这表明岩浆弧的新生地壳在晚白垩世新特提斯洋俯冲过程中发生了再造。以长英质岩石为主的表壳岩进入深地壳很可能是岩浆弧中-下地壳由基性转变成中性成分的重要方式。  相似文献   

10.
全球造山系类型主要分为增生型和碰撞型两大类。现今,全球两大巨型造山系的研究表明:环太平洋增生造山系正在经历洋- 陆俯冲过程,新特提斯- 喜马拉雅碰撞造山系经历过洋- 陆俯冲之后又步入陆- 陆碰撞阶段。其中,安第斯造山带是东太平洋Lazaca 大洋板块多阶段向东俯冲在南美大陆之下后形成的以“大洋板块深(陡)- 浅(平)俯冲交替、洋岛- 地体增生拼贴、碰撞和俯冲型高原隆升”为特征的现代“安第斯岛弧带”和“安第斯- 科迪勒拉俯冲型增生造山系”。位于亚洲大陆内部的冈底斯造山系经历了新特提斯洋盆向北俯冲、消减和洋盆闭合以及印度- 亚洲碰撞的两重阶段,具体包括早中生代开始的新特提斯“多洋岛”形成和向拉萨地体的多阶段俯冲汇聚,致使洋岛 地体增生碰撞形成冈底斯岩浆弧,继而铸造了晚白垩世的“安第斯型”俯冲增生造山系;在俯冲和碰撞转换阶段发生了岩浆大爆发并形成冈底斯初始高原;而后才进入印度- 亚洲陆陆碰撞阶段,形成大规模的E- W向逆冲断裂、走滑断裂和S- N向裂谷系。因此,安第斯是冈底斯的前半生,冈底斯的今天是安第斯的未来。研究冈底斯的构造演化,特别是早期的构造岩浆活动,必须与安第斯俯冲增生的历史进行对比。  相似文献   

11.
为了探讨冈底斯南缘晚三叠世-早侏罗世时期岩浆岩的成因及与新特提斯洋早期演化的关系,文章对冈底斯南缘汤 白地区斑状花岗岩的岩相学、年代学和地球化学特征进行研究。LA-ICP-MS 锆石U-Pb 定年结果显示,斑状花岗岩的结晶年 龄为(190.37±0.87) Ma (MSWD=0.58),形成于早侏罗世。岩体以高SiO2 (75.20%~75.97%)、Na2O (3.39%~4.12%)、 Na2O/K2O 值(1.40~2.00) 和低MgO (0.32%~0.38%) 为特征,属于钙碱性I 型花岗岩。微量元素地球化学特征显示,富集大 离子亲石元素(LILEs:如Rb、U 和K) 和轻稀土(LREEs),亏损高场强元素(HFSEs:如Nb、Ta 和Ti) 和重稀土 (HREEs),表明其形成于新特提斯洋北向俯冲相关的岩浆弧环境。同时岩石具有较低的Mg#值(26.71~41.34,平均值为 35.26) 和与下地壳接近的Nb/Ta 值,指示岩浆主要起源于新生下地壳部分熔融。结合前人最新的研究成果表明,南冈底斯 晚三叠世-早侏罗世时期的岩浆岩形成于新特提斯洋北向俯冲相关岩浆弧环境,新特提斯洋向北俯冲起始时间至少早于本 文报道的汤白斑状花岗岩的结晶年龄(190.37±0.87 Ma)。  相似文献   

12.
西藏山南隆子县列麦地区始新世花岗岩的成岩时代和背景对喜马拉雅地区同碰撞阶段的构造演化具有重要意义。本文对隆子县列麦乡界归党村的白云母花岗岩开展独居石LA-ICP-MS U-Th-Pb测年,独居石40个测点的~(208)Pb/~(232)Th加权平均年龄为41±0.1Ma(MSWD=1.4),形成于始新世中期。结合区域上的始新世岩浆岩活动和区域变质作用,本文认为在50~45Ma印度下地壳发生中-高压变质和部分熔融;45Ma新特提斯洋洋壳板片断离,软流圈地幔上涌;45~41Ma喜马拉雅发生短暂的拉张环境导致大量的埃达克质岩浆岩侵位和麻粒岩的折返。  相似文献   

13.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

14.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

15.
The Kiziltepe ophiolitic thrust sheet in the Bolkar Mountains of Turkey occurs between two subparallel ophiolite belts bounding the Tauride carbonate platform and represents a remnant of the Cretaceous Neo-Tethyan oceanic lithosphere. It is underlain by foliated amphibolite that represents a metamorphic sole developed at the inception of an intra-oceanic subduction zone in the Neo-Tethys 92-90 Ma. Blueschist-facies overprinting of the amphibolite indicates that the metamorphic sole was dragged deeper into the subduction zone where it experienced increasing P/T with cooling. Regional tectonic constraints suggest a Maastrichtian age for the timing of this blueschist-facies metamorphism. Sodic amphibole-rich veins and crossite/Mg-riebeckite rims on hornblende suggest that growth of blueschist-facies minerals was facilitated by infiltration of fluid along fractures and grain boundaries. We infer a counterclockwise P-T-t trajectory during which metamorphism was accompanied/succeeded by rapid uplift along the northern edge of the Tauride belt in Late Cretaceous-early Tertiary time.  相似文献   

16.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   

17.
中特提斯是中生代中晚期存在于南、北大陆之间的海洋。该海洋在晚白垩世消亡后,遗留长千余公里的班公湖-怒江板块结合带。在大量研究成果中,对中特提斯如何消亡这一重大问题至今分歧甚大。不少研究者持洋壳俯冲消亡(东太平洋模式)观点,但在俯冲方向上却有向南或向北之别。笔者则认为中特提斯是一个具有众多互不相通、时代早晚不同的狭窄洋盆的特殊海洋,綦肖亡过程中根本未发生过大规模的洋壳俯冲,帮提出剪式闭合加地体逐次拼  相似文献   

18.
通过对龙陵-瑞丽断裂与主高黎贡断裂夹持区内构造混杂岩进行地质填图和剖面研究,在原划的三叠纪扎多组中发现沿龙陵-瑞丽断裂带呈透镜状断续分布的中酸性火山岩,并获得LA-ICP-MS锆石U-Pb年龄130.0Ma±1.7Ma,首次证实滇西龙陵-瑞丽断裂带存在早白垩世火山岩。结合岩石学特征和地球化学特征判断该火山岩形成于岛弧环境,可能是早白垩世怒江洋闭合过程中岩浆活动的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号