首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Expressions are obtained for the ray-theoretical spectral amplitudes of body waves induced by a shear dislocation of arbitrary orientation and depth situated in a radially heterogeneous model of the earth. Account is taken of the azimuthal and colatitudinal radiation patterns of the source, the geometrical spreading, and the reflections and refractions at the free surface and at the mantle-core boundary.In this work spectral amplitudes are calculated for P, SH, SV, PP, PPP, PS, PSS, SP, SPP, SSH, SSSH, SSV, and SSSV. The results are presented in the form of tables for a source of strength U0dS = 1015cm3, where U0 is the amount of the dislocation and dS is the fault area. Given the slip and dip angles of the source, the amplitudes of these surface reflections and direct phases can be obtained from these tables for all azimuths, for most of the epicentral distances at which a particular phase is observable, and for all the fourteen focal depths included in the Jeffreys-Bullen tables. It is found that the depth of the source has a strong effect on the amplitudes of the body wave signals.  相似文献   

2.
Expressions are obtained for the ray-theoretical spectral amplitudes of body waves induced by a shear dislocation of arbitrary orientation and depth situated in a radially heterogeneous model of the earth. Account is taken of the azimuthal and colatitudinal radiation patterns of the source, the geometrical spreading, and the reflections and refractions at the free surface and at the mantle-core boundary.In this work spectral amplitudes are calculated for PKP, PKS, SKP and SKS. The results are presented in the form of tables for a source of strength U0dS = 1015 cm3, where U0 is the amount of the dislocation and dS is the fault area. Given the slip and dip angles of the source, the amplitudes of the four core phases can be obtained from these tables for all azimuths, for most of the epicentral distances at which a particular phase is observable, and for all the fourteen focal depths included in the Jeffreys-Bullen tables. It is found that the depth of the source has a strong effect on the amplitudes of the body-wave signals.  相似文献   

3.
Gahyun Goh  Yign Noh 《Ocean Dynamics》2013,63(9-10):1083-1092
Large eddy simulation (LES) reveals that the Coriolis force plays an important role in seasonal thermocline formation. In the high-latitude ocean, a seasonal thermocline is formed at a certain depth, across which the downward transports of heat and momentum are prohibited. On the other hand, in the equatorial ocean, heat and momentum continue to propagate downward to the deeper ocean without forming a well-defined thermocline. Mechanism to clarify the latitudinal difference is suggested. The depth of a seasonal thermocline h is scaled in terms of both the Ekman length scale λ and the Monin–Obukhov length scale L, as h ??? 0.5()1/2, which is in contrast to the earlier suggestion as h?∝?L.  相似文献   

4.
In a weathered environment estimates of depth and conductance of metallic sulphide dykes from conventional anomaly index diagrams for a vertical half-plane in air have to be corrected, besides the usual corrections, for: 1. moderate conductivity of the host rocks, and 2. finiteness of strike length S and depth extent D. Model experiments have been carried out to evaluate the response variation of a vertical planar conductor with varying depth extent and strike length for both insulating and conductive surroundings. The results indicate: 1. A conductor with finite depth extent (D/L < 2.5) or strike length (S/L < 5.0) in an insulating medium yields a lower estimate of conductance (mineralization) and a greater depth. 2. A moderately-conductive host rock enhances the anomaly and rotates the phase so that the conductor appears to be more resistive (less mineralized) and shallower. The results have practical significance since in weathered surroundings a highly-mineralized body of finite size could be missed, or misjudged, because of low estimates of conductivity and depth.  相似文献   

5.
—The 1989 M s = 7.1 Loma Prieta earthquake was preceded for 12 days by what have been claimed as precursory ultra-low-frequency (ULF) magnetic noise anomalies ten times background, and by a very high peak up to 100 times background just 3 hours before the earthquake. We propose that these anomalous fields could have been due to the formation of a long thin highly-conductive region along the earthquake fault, which magnified the external electromagnetic waves incident on the earth’s surface. We use a simplified quantitative model, assuming a highly-conductive elliptic cylinder embedded in a layered resistivity structure, which we base on independent magnetotelluric measurements. The magnetic-field anomaly observed 3 hours before the main shock can be modeled by assuming an elliptic conductor extending from the surface to the hypocenter with a conductivity of 5 S · m?1. Our computed anomaly matches the observed anomaly to within a deviation of 35% over an observed frequency range of over 2 orders of magnitude, over which the measured anomaly varies from only about twice background (at 5 Hz) to about 100 times background (at 0.01 Hz). In addition, other anomalies recorded up to 12 days before the earthquake, can be modeled in detail by varying only the size of the elliptic conductor.¶We show that such an increase in conductivity could be caused by a precursory reorganization of the geometry of fluid-filled porosity in the fault-zone, which we call a dilatant-conductive effect. The extreme observed magnetic anomalies can be modeled using the high fault-zone porosity (c. 10%) and fluid conductivity (equivalent to 2 M NaCl) implied by other workers’ magneto-telluric measurements, but without requiring the large-scale precursory fluid flow characteristic of other published models for the magnetic-field precursors.  相似文献   

6.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

7.
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of \(\sim \) 300–1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.  相似文献   

8.
The inductive response of a conducting horizontal cylinder embedded in a uniform earth is studied using numerical results obtained for an analytical solution for the problem of a conducting cylinder buried in a homogeneous earth for the case of a uniform inducing field. A check of the validity of the numerical results is made by a comparison with analogue model measurements for a number of cases. Numerical results for a range of cylinder radii (a = 1–10 km), depths of burial (d= 0–4 km), conductivity contrasts (σ2= 10?2-10 Sm?1), and source frequencies (f= 10?1-10?4 Hz) of interest in the interpretation of magnetotelluric field measurements are presented. The results indicate that for a uniform inducing field the conductivity and depth of burial of a horizontal cylindrical inhomogeneity are best determined through a measurement of the amplitudes Hy, Hz and Ex and the phases φy and Ψx.  相似文献   

9.
The transient response of a layered structure to plane wave excitation can be considered to be composed of a series of waves and a ground wave. For the case of a half-space of conductivity σ and permeability μ the maximum in the electric field is found at a depth z and time t when t=z2σμ/2. This formula can be used to estimate the depth to a buried horizontal conductor with an accuracy that depends upon the resistive contrast at the conductor's surface. The above ray type of solution can be converted to a solution composed of a number of modes by the use of a Poisson transform and the transformed solutions yield decay constants that are consistent with the previously reported results. In the case of a finite source, the maximum in the electric field is strongly directed. The direction depends upon the geometry of the source and the air-earth interface. Although the maximum varies with direction it can be shown that in some directions similar laws to that above are valid. The depth to a conductor can be estimated from the early part of the transients when the ground wave is removed. The removal of the ground wave from the transient is facilitated by the use of an apparent conductivity formula. Although these results were obtained under restrictive conditions they do provide some insight into the electrical transients that are encountered by studying more complex models.  相似文献   

10.
Electromagnetic induction in the Vancouver Island region for a uniform inducing source field for 300 s period is investigated with the aid of three-dimensional (3-D) numerical and analogue model results and field site measurements. The thin sheet numerical model, based on the subducting Juan de Fuca plate analogue model ofDosso et al., consists of a 5km thick non-uniform thin sheet (comprising the lateral conductivity contrasts arising from the land, the varying depth ocean, and the sediment) underlain by a four-layer conductive structure. The four-layer conductive structure beneath the non-uniform thin sheet simulates the effect of the Juan de Fuca plate subducting Vancouver Island. To examine the effects of the ocean channel depth between Vancouver Island and the British Columbia (Canada) mainland, numerical results were obtained for two channel depths (0 and 600 m). The results indicate that the channel plays an important role in the geomagnetic response in the central and inner coastal regions of Vancouver Island. The general agreement of the 3-D numerical model induction arrows with the analogue model and field site induction arrows for 300 s supports the premise of a layered conductive substructure dipping at a small angle, at most, beneath Vancouver Island.Lithoprobe Publication No. 311.  相似文献   

11.
—?Modal summation technique is used to generate 5000, three-component theoretical seismograms of Love and Rayleigh waves, assuming modified PREM (PREM-C) and AK135F global earth models. The focal depth h and the geometrical fault parameters are randomly chosen so as to uniformly cover possible source mechanisms and obtain uniform distribution of log h in the interval 1?h?h?M s of the form:¶ΔM s (h)=0 forh< 20km, ΔM s (h)=0.314log(h)-0.409 for 20≠h< 60km, ΔM s (h)=1.351log(h)-2.253 for 60≠h< 100km, ΔM s (h)=0.400log(h)-0.350 for 100≠h< 600km .¶After applying the above correction, the relationship between the surface wave magnitude and the scalar seismic moment for the observational data set significantly improves, and becomes independent of the source depth. In relation to CTBT, no depth correction is needed for M S when the m b ???M S discriminant is computed, because the proposed correction is zero for earthquakes with foci above 20?km.  相似文献   

12.
The response of a horizontal conducting cylinder embedded in a uniform conducting earth is studied using mathematical models of uniform and line current source excitation for the period range 10 to 104 s. The line current source is located at heights ranging from 100–750 km above the surface of the earth. From the calculated results, it is shown that for periods greater than 103 s the ratioE x /H y at the surface of the earth for localized fields, such as the auroral and equatorial electrojet normally situated at heights of about 100 km, is considerably different from that for a uniform source. The results presented also show that the magneto-telluric method of geophysical prospecting for ore bodies in regions of the electrojet may not be very practicable for periods exceeding 103 s.  相似文献   

13.
It is shown that when the travel-time curve of a refracted wave from a surface source is known and at least one of the following conditions is satisfied, i.e. when
  1. the travel-time curve of a wave reflected from a horizontal interface lying below the deepest low velocity layer is known, or
  2. the travel-time curve of a wave from a deep source situated below the deepest low velocity layer is known, or
  3. the measureH(u)=mes {z∶z≥0,v ?1 (z)≥u} is analytical in some segment [c, d], where \(0< c< d< \infty , c< a_n , H(a_n ) = \bar z_n ,\bar z_n\) is the depth of the lower end of the deepest low velocity layer and in the interval [c, ∞) an analytical functionH(u)) exists which providesH(u)≡H(u)) ifu∈[c, d], then (1) velocityv(z) outside the low velocity layers and (2) the measureH k (u)=mes {z∶z∈L k,v ?1 (z)≥u} for each low velocity layerL k,k=1, 2, ..., n, are defined unambiguously.
  相似文献   

14.
The reaction of CO + OH? in aqueous solution to give formate was studied as a carbon monoxide sink on the primitive earth and in the present ocean. The reaction is first order in OH? and first order in the molar CO concentration. The second order rate constant is given by log k(M?1hr?1) = 15.83?4886/T between 25°C and 60°C. Using the solubility of CO in sea water, and assuming a pH of 8 for a primitive ocean of the present size, the halflife of CO in the atmosphere is calculated to be 12 × 106 yr at 0°C and 5.5 × 104 yr at 25°C.Three other CO sinks would have been important in the primitive atmosphere: CO + H2 → H2CO driven by various energy sources, CO + OH → CO2 + H, and the Fischer-Tropsch reaction of CO + H2 → hydrocarbons, etc. It is concluded that the lifetime of a CO atmosphere would have been very short on the geological time scale although the relative importance of these four CO sinks is difficult to estimate.The CO + OH? reaction to give formate is a very minor CO sink on the earth at the present time.  相似文献   

15.
By modelling the observed distribution of210Pb and210Po in surface waters of the Pacific, residence times relative to particulate removal are determined. For the center of the North Pacific gyre these are τPo = 0.6years andτPb = 1.7years. The surface ocean τPb is determined by particulate transport rather than plankton settling. The fact that it is about two orders of magnitude smaller than τPb for the deep ocean implies a sharp change in the adsorptive quality of particles during descent through the water column.  相似文献   

16.
17.
Tsunami generated by submarine slumps and slides are investigated in the near-field, using simple source models, which consider the effects of source finiteness and directivity. Five simple two-dimensional kinematic models of submarine slumps and slides are described mathematically as combinations of spreading constant or slopping uplift functions. Tsunami waveforms for these models are computed using linearized shallow water theory for constant water depth and transform method of solution (Laplace in time and Fourier in space). Results for tsunami waveforms and tsunami peak amplitudes are presented for selected model parameters, for a time window of the order of the source duration.The results show that, at the time when the source process is completed, for slides that spread rapidly (cR/cT≥20, where cR is the velocity of predominant spreading), the displacement of the free water surface above the source resembles the displacement of the ocean floor. As the velocity of spreading approaches the long wavelength tsunami velocity the tsunami waveform has progressively larger amplitude, and higher frequency content, in the direction of slide spreading. These large amplitudes are caused by wave focusing. For velocities of spreading smaller than the tsunami long wavelength velocity, the tsunami amplitudes in the direction of source propagation become small, but the high frequency (short) waves continue to be present. The large amplification for cR/cT1 is a near-field phenomenon, and at distances greater than several times the source dimension, the large amplitude and short wavelength pulse becomes dispersed.A comparison of peak tsunami amplitudes for five models plotted versus L/h (where L is characteristic length of the slide and h is the water depth) shows that for similar slide dimensions the peak tsunami amplitude is essentially model independent.  相似文献   

18.
Abstract

A two gyre circulation and inertial western boundary currents have been observed in a sloping bottom laboratory model of a barotropic ocean circulation. Water of viscosity v is contained in a rotating (angular velocity ω), square basin of side L (30 cm) with a flat top and a bottom slope (tan θ) such that the depth (H) varies from 12 to 15 cm. The flow is driven by a distributed source and sink at the upper surface, a plate drilled with 342 holes. The hole distribution and size is arranged so that the average imposed vertical velocity, w = w 0 sin (2πy′/30), models the Ekman divergence from a two gyre zonal wind stress. Fluid flow is observed with the thymol blue technique over the ranges of Rossby numbers (w 0/2ωL tan θ) from 1.44 × 10?3 to 1.41 × 10?2 and Ekman numbers (v/2ωH 2) from 2.13 × 10?5 to 2.10 × 10?3. At the largest Rossby numbers the flow pattern changes markedly, but the non-uniformity of the imposed vertical velocity also penetrates deep into the fluid in this regime.  相似文献   

19.
《水文科学杂志》2013,58(2):338-351
Abstract

A drain spacing formula is derived considering the variation in radial flux and the area above the drain level in the radial flow zone. The extent of the radial flow zone is ascertained by applying a mass balance and differentiability criterion of the water surface profile at the interface of radial and Dupuit-Forchheimer flow zones. The radial flow zone extends from the centre of the tile drain a distance of 2/π times the depth to impervious layer below the drain. For a normal ratio of recharge rate to hydraulic conductivity (R/K ≤ 0.0025), the water surface profile in the radial flow zone computed using Hooghoudt's formula is very different from the profile obtained by the new drain spacing formula; however, Hooghoudt's formula computes the maximum water table height which marginally differs from that found by the present method. For a ratio of high recharge rate to hydraulic conductivity (R/K = 0.1) and close drain spacing (L/D = 2), the difference in the maximum heights is 21%. Hooghoudt's formula overestimates the maximum water table position for L/D < 40. Unlike Hooghoudt's equivalent depth, the equivalent depth obtained using the present method is a function of the ratio of recharge rate to hydraulic conductivity.  相似文献   

20.
Field determined hydraulic and chemical transport properties can be useful for the protection of groundwater resources from land-applied chemicals. Most field methods to determine flow and transport parameters are either time or energy consuming and/or they provide a single measurement for a given time period. In this study, we present a dripper-TDR field method that allows measurement of hydraulic conductivity and chemical transport parameters at multiple field locations within a short time period. Specifically, the dripper-TDR determines saturated hydraulic conductivity (Ks), macroscopic capillary length (λc), immobile water fraction (θim/θ), mass exchange coefficient (α) and dispersion coefficient (Dm). Multiple dripper lines were positioned over five crop rows in a field. Background and step solutions were applied through drippers to determine surface hydraulic conductivity parameters at 44 locations and surface transport properties at 38 locations. The hydraulic conductivity parameters (Ks, λc) were determined by application of three discharge rates from the drippers and measurements of the resultant steady-state flux densities at the soil surface beneath each dripper. Time domain reflectometry (TDR) was used to measure the bulk electrical conductivity of the soil during steady infiltration of a salt solution. Breakthrough curves (BTCs) for all sites were determined from the TDR measurements. The Ks and λc values were found to be lognormally distributed with average values of 31.4 cm h−1 and 6.0 cm, respectively. BTC analysis produced chemical properties, θim/θ, α, and Dm with average values of 0.23, 0.0036 h−1, and 1220 cm2 h−1, respectively. The estimated values of the flow and transport parameters were found to be within the ranges of values reported by previous studies conducted at nearby field locations. The dripper TDR method is a rapid and useful technique for in situ measurements of hydraulic conductivity and solute transport properties. The measurements reported in this study give clear evidence to the occurrence of non-equilibrium water and chemical movement in surface soil. The method allows for quantification of non-equilibrium model parameters and preferential flow. Quantifying the parameters is a necessary step toward determining the influences of surface properties on infiltration, runoff, and vadose zone transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号