首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir   总被引:2,自引:2,他引:0  
The seismic hazard study for Pakistan and Azad Jammu and Kashmir has been conducted by using probabilistic approach in terms of peak ground acceleration (PGA) in m/s2 and also seismic hazard response spectra for different cities. A new version of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005) ground acceleration model is used, and parameterization is based on most recent updated earthquake catalogs that consisted of 14,000 events. The threshold magnitude was fixed at M w 4.8, but seismic zones like northern Pakistan–Tajikistan, Hindukush and northern Afghanistan–Tajikistan border had M w 5.2. The average normalized ‘a’ and ‘b’ values for all zones are 6.15 and 0.95, respectively. Seismicity of study area was modeled, and ground motion was computed for eight frequencies (0.025, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 s) for different annual exceedance rates of 0.02, 0.01, 0.005, 0.002 and 0.001 (return periods 50, 100, 200, 500 and 1,000 years) for stiff rocks at the gridding of 0.1° × 0.1°. Seismic hazard maps based on computed PGA for 0.02, 0.01 and 0.002 annual exceedance are prepared. These maps indicate the earthquake hazard of Pakistan and surrounding areas in the form of acceleration contour lines, which are in agreement with geological and seismotectonic characteristics of the study area. The maximum seismic hazard values are found at Muzaffarabad, Gilgit and Quetta areas.  相似文献   

2.
A Probabilistic method is used to evaluate the seismic hazard of nineteen embankment dam sites in Jordan. A line source model developed by McGuire (1978) is used in this study. An updated earthquake catalogue covering the period from 1 A.D. to 1991 A.D. is used for this purpose. This catalogue includes all earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes 27.0°–35.5° N and longitudes 32.0°–39.0° E.Nine distinct seismic sources of potential seismic activities are identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values are higher for dam sites closer to the Dead Sea Fault. This fault is believed to be responsible for most earthquake activities in Jordan and vicinity. The highest PGA value is found to be for Al-Karama dam site.  相似文献   

3.
The performance-based liquefaction potential analysis was carried out in the present study to estimate the liquefaction return period for Bangalore, India, through a probabilistic approach. In this approach, the entire range of peak ground acceleration (PGA) and earthquake magnitudes was used in the evaluation of liquefaction return period. The seismic hazard analysis for the study area was done using probabilistic approach to evaluate the peak horizontal acceleration at bed rock level. Based on the results of the multichannel analysis of surface wave, it was found that the study area belonged to site class D. The PGA values for the study area were evaluated for site class D by considering the local site effects. The soil resistance for the study area was characterized using the standard penetration test (SPT) values obtained from 450 boreholes. These SPT data along with the PGA values obtained from the probabilistic seismic hazard analysis were used to evaluate the liquefaction return period for the study area. The contour plot showing the spatial variation of factor of safety against liquefaction and the corrected SPT values required for preventing liquefaction for a return period of 475 years at depths of 3 and 6 m are presented in this paper. The entire process of liquefaction potential evaluation, starting from collection of earthquake data, identifying the seismic sources, evaluation of seismic hazard and the assessment of liquefaction return period were carried out, and the entire analysis was done based on the probabilistic approach.  相似文献   

4.
A first order seismic microzonation map of Delhi is prepared using five thematic layers viz., Peak Ground Acceleration (PGA) contour, different soil types at 6 m depth, geology, groundwater fluctuation and bedrock depth, integrated on GIS platform. The integration is performed following a pair-wise comparison of Analytical Hierarchy Process (AHP), wherein each thematic map is assigned weight in the 5-1 scale: depending on its contribution towards the seismic hazard. Following the AHP, the weightage assigned to each theme are: PGA (0.333), soil (0.266), geology (0.20), groundwater (0.133) and bedrock depth (0.066). The thematic vector layers are overlaid and integrated using GIS. On the microzonation theme, the Delhi region has been classified into four broad zones of vulnerability to the seismic hazard. They are very high (> 52%), high (38–52%), moderate (23–38%) and less ( < 23%) zones of seismic hazard. The “very high” seismic hazard zone is observed where the maximum PGA varies from 140 to 210 gal for a finite source model of Mw 8.5 in the central seismic gap. A site amplification study from local and regional earthquakes for Delhi region using Delhi Telemetry Network data shows a steeper site response gradient in the eastern side of the Yamuna fluvial deposits at 1.5 Hz. The ‘high’ seismic hazard zone occupies most of the study area where the PGA value ranges from 90 to 140 gal. The ‘moderate’ seismic hazard zone occurs on either side of the Delhi ridge with PGA value varying from 60 to 90 gal. The ‘less’ seismic hazard zone occurs in small patches distributed along the study area with the PGA value less than 60 gal. Site response studies, PGA distribution and destruction pattern of the Chamoli earthquake greatly corroborate the seismic hazard zones estimated through microzonation on GIS platform and also establishes the methodology incorporated in this study.  相似文献   

5.
A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. The maximum probable earthquake magnitude (M max) for each seismic source has been estimated by considering the regional rupture characteristics method and has been compared with the maximum magnitude observed \(\left ({M_{\max }^{\text {obs}}}\right )\), \(M_{\max }^{\text {obs}} +0.5\) and Kijko method. The best suitable ground motion prediction equations (GMPE) were selected from 27 applicable GMPEs based on the ‘efficacy test’. Furthermore, different weight factors were assigned to different M max values and the selected GMPE to calculate the final hazard value. Peak ground acceleration and spectral acceleration at 0.2 and 1 s were estimated and mapped for worst-case scenario and 2 and 10% probability of exceedance for 50 years. Peak ground acceleration (PGA) showed a variation from 0.04 to 0.36 g for DSHA, from 0.02 to 0.32 g and 0.092 to 0.1525 g for 2 and 10% probability in 50 years, respectively. A normalised site-specific design spectrum has been developed considering three vulnerable sources based on deaggregation at the city center and the results are compared with the recent 2011 Sikkim and 2015 Nepal earthquakes, and the Indian seismic code IS 1893.  相似文献   

6.
Seismic hazard in terms of peak ground acceleration (PGA) has been evaluated in northern Algeria using spatially smoothed seismicity data. We present here a preliminary seismic zoning in northern Algeria as derived from the obtained results.Initially, we have compiled an earthquake catalog of the region taking data from several agencies. Afterwards, we have delimited seismic areas where the b and mmax parameters are different. Finally, by applying the methodology proposed by Frankel [Seismol. Res. Lett. 66 (1995) 8], and using four complete and Poissonian seismicity models, we are able to compute the seismic hazard maps in terms of PGA with 39.3% and 10% probability of exceedance in 50 years.A significant result of this work is the observation of mean PGA values of the order of 0.20 and 0.45 g, for return periods of 100 and 475 years, respectively, in the central area of the Tell Atlas.  相似文献   

7.
Indian peninsular shield, which was once considered to be seismically stable, is experiencing many earthquakes recently. As part of the national level microzonation programme, Department of Science and Technology, Govt. of India has initiated microzonation of greater Bangalore region. The seismic hazard analysis of Bangalore region is carried out as part of this project. The paper presents the determination of maximum credible earthquake (MCE) and generation of synthetic acceleration time history plot for the Bangalore region. MCE has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore city. The seismotectonic map has been prepared by considering the faults, lineaments, shear zones in the area and historic earthquake events of more than 150 events. Shortest distance from the Bangalore to the different sources is measured and then peak ground acceleration (PGA) is calculated for the different source and moment magnitude. Maximum credible earthquake found in terms of moment magnitude is 5.1 with PGA value of 0.146 g at city centre with assuming the hypo central distance of 15.88 km from the focal point. Also, correlations for the fault length with historic earthquake in terms of moment magnitude, yields (taking the rupture fault length as 5% of the total fault length) a PGA value of 0.159 g. Acceleration time history (ground motion) and a response acceleration spectrum for the corresponding magnitude has been generated using synthetic earthquake model considering the regional seismotectonic parameters. The maximum spectral acceleration obtained is 0.332 g for predominant period of 0.06 s. The PGA value and synthetic earthquake ground motion data from the identified vulnerable source using seismotectonic map will be useful for the PGA mapping and microzonation of the area.  相似文献   

8.
In this work, an attempt has been made to evaluate the spatial variation of peak horizontal acceleration (PHA) and spectral acceleration (SA) values at rock level for south India based on the probabilistic seismic hazard analysis (PSHA). These values were estimated by considering the uncertainties involved in magnitude, hypocentral distance and attenuation of seismic waves. Different models were used for the hazard evaluation, and they were combined together using a logic tree approach. For evaluating the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1°, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources within a radius of 300 km. Rock level PHA values and SA at 1 s corresponding to 10% probability of exceedance in 50 years were evaluated for all the grid points. Maps showing the spatial variation of rock level PHA values and SA at 1 s for the entire south India are presented in this paper. To compare the seismic hazard for some of the important cities, the seismic hazard curves and the uniform hazard response spectrum (UHRS) at rock level with 10% probability of exceedance in 50 years are also presented in this work.  相似文献   

9.
A method for conducting a seismic hazard analysis of active faults using a fault-rupture model and a point-source model is presented. Based on a peak ground acceleration (PGA) attenuation formula, the annual probability of exceedance at a specific site is calculated. The uniform hazard spectrum is also determined based on a spectral amplitude attenuation formula. To improve the reliability of the seismic hazard analysis, a detailed study of hazard parameters is conducted and discussed. A specific site in Taiwan is chosen to illustrate the hazard analysis.  相似文献   

10.
In relation to the assessment of earthquake-induced landslide hazard, this paper discusses general principles and describes implementation criteria for seismic hazard estimates in landslide-prone regions. These criteria were worked out during the preparation of a hazard map belonging to the official Italian geological cartography and they are proposed as guidelines for future compilation of similar maps. In the presented case study, we used a procedure for the assessment of seismic hazard impact on slope stability adopting Arias intensity Ia as seismic shaking parameter and critical acceleration a c as parameter representing slope strength to failures induced by seismic shaking. According to this procedure, after a preliminary comparison of estimated historical maximum values of Ia with values proposed in literature as landslide-triggering thresholds, a probabilistic approach, based on the Newmark’s model, is adopted: it allows to estimate the minimum critical acceleration a c required for a slope to keep under a prefixed value, the probability of failures induced by seismic shakings expected in a given time interval. In this way, one can prepare seismic hazard maps where seismic shaking is expressed in an indirect way through a parameter (the critical acceleration) representing the “strength” that seismic shakings mobilise in slope materials (strength demand) with a prefixed exceedance probability. This approach was applied to an area of Daunia (Apulia—southern Italy) affected by frequent landslide phenomena. The obtained results indicate that shakings with a significant slope destabilisation potential can be expected particularly in the north-western part of the area, which is exposed to the seismic activity of Apennine tectonic structures.  相似文献   

11.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

12.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

13.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

14.
This study first presents the series of peak ground acceleration (PGA) in the three major cities in Taiwan. The PGAs are back-calculated from an earthquake catalog with the use of ground motion models. The maximums of the 84th percentile (mean?+?one standard deviation) PGA since 1900 are 1.03, 0.36, and 0.10?g, in Taipei, Taichung, and Kaohsiung, respectively. Statistical goodness-of-fit testing shows that the series of PGA follow a double-lognormal distribution. Using the verified probability distribution, a probabilistic analysis was developed in this paper, and used to evaluate probability-based seismic hazard. Accordingly, given a PGA equal to 0.5?g, the annual exceedance probabilities are 0.56, 0.46, and 0.23?% in Taipei, Taichung, and Kaohsiung, respectively; for PGA equal to 1.0?g, the probabilities become 0.18, 0.14, and 0.09?%. As a result, this analysis indicates the city in South Taiwan is associated with relatively lower seismic hazard, compared with those in Central and North Taiwan.  相似文献   

15.
It has been known that ground motion amplitude will be amplified at mountaintops; however, such topographic effects are not included in conventional landslide hazard models. In this study, a modified procedure that considers the topographic effects is proposed to analyze the seismic landslide hazard. The topographic effect is estimated by back analysis. First, a 3D dynamic numerical model with irregular topography is constructed. The theoretical topographic amplification factors are derived from the dynamic numerical model. The ground motion record is regarded as the reference motion in the plane area. By combining the topographic amplification factors with the reference motions, the amplified acceleration time history and amplified seismic intensity parameters are obtained. Newmark’s displacement model is chosen to perform the seismic landslide hazard analysis. By combining the regression equation and the seismic parameter of peak ground acceleration and Arias intensity, the Newmark’s displacement distribution is generated. Subsequently, the calculated Newmark’s displacement maps are transformed to the hazard maps. The landslide hazard maps of the 99 Peaks region, Central Taiwan are evaluated. The actual landslide inventory maps triggered by the 21 September 1999, Chi-Chi earthquake are compared with the calculated hazard maps. Relative to the conventional procedure, the results show that the proposed procedures, which include the topographic effect can obtain a better result for seismic landslide hazard analysis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Seismic hazard in mega city Kolkata, India   总被引:2,自引:1,他引:1  
The damages caused by recent earthquakes in India have been a wake up call for people to take proper mitigation measures, especially the major cities that lie in the high seismic hazard zones. Kolkata City, with thick sediment deposit (∼12 km), one of the earliest cities of India, is an area of great concern as it lies over the Bengal Basin and lies at the boundary of the seismic zones III and IV of the zonation map of India. Kolkata has been affected by the 1897 Shillong earthquake, the 1906 Calcutta earthquake, and the 1964 Calcutta earthquake. An analysis on the maximum magnitude and b-value for Kolkata City region is carried out after the preparation of earthquake catalog from various sources. Based on the tectonic set-up and seismicity of the region, five seismic zones are delineated, which can pose a threat to Kolkata in the event of an earthquake. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ), and Zone 5: Shield Zone (SZ). The maximum magnitude (m max) for Zones 1, 2, 3, 4, and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. A probability of 10% exceedance value in 50 years is used for each zone. The probabilities of occurrences of earthquakes of different magnitudes for return periods of 50 and 100 years are computed for the five seismic zones. The Peak Ground Acceleration (PGA) obtained for Kolkata City varies from 0.34 to 0.10 g.  相似文献   

17.
A probabilistic seismic hazard analysis for the states of Tripura and Mizoram in North East India is presented in this paper to evaluate the ground motion at bedrock level. Analyses were performed considering the available earthquake catalogs collected from different sources since 1731–2010 within a distance of 500 km from the political boundaries of the states. Earthquake data were declustered to remove the foreshocks and aftershocks in time and space window and then statistical analysis was carried out for data completeness. Based on seismicity, tectonic features and fault rupture mechanism, this region was divided into six major seismogenic zones and subsequently seismicity parameters (a and b) were calculated using Gutenberg–Richter (G–R) relationship. Faults data were extracted from SEISAT (Seismotectonic atlas of India, Geological Survey of India, New Delhi, 2000) published by Geological Survey of India and also from satellite images. The study area was divided into small grids of size 0.05° × 0.05° (approximately 5 km × 5 km), and the hazard parameters (rock level peak horizontal acceleration and spectral accelerations) were calculated at the center of each of these grid cells considering all the seismic sources within a radius of 500 km. Probabilistic seismic hazard analyses were carried out for Tripura and Mizoram states using the predictive ground motion equations given by Atkinson and Boore (Bull Seismol Soc Am 93:1703–1729, 2003) and Gupta (Soil Dyn Earthq Eng 30:368–377, 2010) for subduction belt. Attenuation relations were validated with the observed PGA values. Results are presented in the form of hazard curve, peak ground acceleration (PGA) and uniform hazard spectra for Agartala and Aizawl city (respective capital cities of Tripura and Mizoram states). Spatial variation of PGA at bedrock level with 2 and 10 % probability of exceedance in 50 years has been presented in the paper.  相似文献   

18.
A probabilistic method is used to evaluate the seismichazard of Adassiya dam site on the Yarmouk river in Jordan. A line source model developedby McGuire (1978) is used in this study. An updated earthquake catalogue coveringthe period from 1 A.D. to 1996 A.D. is used for this purpose. This catalogue includesall earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes27.0°–35.5°N and longitudes 32.0°–39.0°E.Nine distinct seismic sources of potential seismic activitiesare identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values at the dam site are as follows:[] Operating Basis Earthquake (OBE) (50% probabilityof non-exceedance for a design life of 100 years – corresponding to a return period of 145 years) is 133.6 cm/sec2.[] An earthquake with 90% probability of non-exceedancefor a design life of 50 years – corresponding to a return period of 475 years is 214.9 cm/sec2.[] Maximum Credible Earthquake (MCE) (Return period of900 years) is 283.0 cm/sec2.Strong motion acceleration time history of these earthquakes are givenbased on strong motion records of the November 1995 Gulf of Aqaba earthquake.Local site effect analysis for Adassiya Dam site using SHAKE program showed no amplification. Normalized site-specific acceleration response spectra for OBE and MCE design earthquakes is also given.  相似文献   

19.
The most important seismic hazard parameters required to demarcate seismic zones are the peak horizontal acceleration (PHA) and spectral acceleration (SA). The two approaches for evaluation of seismic hazard are the probabilistic seismic hazard analysis and the deterministic seismic hazard analysis (DSHA). The present study evaluates the seismic hazard of the South Indian Peninsular region based on the DSHA methodology. In order to consider the epistemic uncertainties in a better manner, a logic tree approach was adopted in the evaluation of seismic hazard. Two types of seismic sources and three different attenuation relations were used in the analysis. The spatial variation of PHA (mean and 84th percentile values) and SA values for 1 Hz and 10 Hz at bedrock level (84th percentile values) for the entire study area were evaluated and the results are presented here. The surface level peak ground acceleration (PGA) values will be different from that of the bedrock level values due to the local site conditions. The PGA values at ground surface level were evaluated for four different National Earthquake Hazard Reduction Program site classes by considering the non-linear site response of different soil types. The response spectra for important cities in South India were also prepared using the deterministic approach and the results are presented in this paper.  相似文献   

20.
The town of Edessa is located on Northern Greece at a region that is characterized as low seismicity zone due to the fact that few moderate events of M < 6 occurred during the last century. According to the Greek Seismic Code, the expected acceleration having a 10% probability of being exceeded in 50 years is equal to 0.16g. However, an amplification of ground motion is likely to occur due the local geology that is consisted of Holocene fluvio-torrential deposits. The basic aim of this paper is to evaluate the site amplification due to geological conditions and to assess the liquefaction hazard. In order to achieve this, 1-D site response analyses were performed. The data that were employed for the construction of the numerical models have been collected from borings with standard penetrations tests (SPT) that were drilled for construction purposes. Afterward, the liquefaction potential of the subsoil layers was evaluated taking into consideration two seismic scenarios. The first scenario was based on the seismic parameters, earthquake magnitude and PGA, assigned by the Greek Seismic Code. On the second seismic model, we employed the values of acceleration, resulted from the 1-D analyses and the earthquake magnitude as it was defined by the Greek Seismic Code. In order to compile the liquefaction hazard maps, we initially estimated the liquefaction potential index (LPI) of the soil columns using the parameters provided by SPT, for both seismic loadings, and afterward we correlated these values with the proposed classification of the severity of liquefaction-induced deformations. In addition, having computed the value of probability based on the LPI, liquefaction manifestations probability maps were compiled for both scenarios. The result of this study was that liquefaction-induced ground disruptions are likely to occur at the center of the city, among the branches of Voda River, only when the amplified values of acceleration are taken into account to the computation of liquefaction potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号