首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红河盆地的化学风化作用:主要和微量元素地球化学记录   总被引:1,自引:0,他引:1  
河流沉积物的元素含量有助于反映其流域的自然风化过程。红河是世界上重要的河流之一,但其沉积物的地球化学研究却几乎没有。本文通过开展红河盆地干流和主要支流40个样品的主要和微量元素地球化学分析,发现红河流域硅酸盐岩的化学风化作用为中等强度,与长江及亚马逊河的风化强度相近,而高于黄河,低于珠江;且化学风化作用受该区域的气候和构造作用控制。  相似文献   

2.
长江与汉江现代沉积物元素组成分析   总被引:1,自引:0,他引:1  
梅惠  马振东  李长安 《世界地质》2007,26(2):208-212
长江与汉江表层沉积物常量及微量元素组成特征分析表明,长江沉积物的常量化学组分中CaO、MgO相对较汉江高,汉江沉积物中Fe2O3、Al2O3、K2O相对较长江高;汉江沉积物的微量化学组分中Cr Ni、Mo、As、Sb、F等元素相对长江高;长江沉积物Cd的赋存形式以离子交换态和碳酸盐态为主,汉江沉积物Cd的赋存形式以残余态为主。长江沉积物与汉江沉积物组成的差异是由其源区表壳岩系决定的,前者呈现高CaO、MgO,并呈碱性(pH:8.02)的特点,而后者相对富Fe2O3,并呈中性(pH:6.8)。  相似文献   

3.
长江与黄河沉积物REE地球化学及示踪作用   总被引:66,自引:4,他引:62  
杨守业  李从先 《地球化学》1999,28(4):374-380
长江与黄河沉积物的稀土元素(REE)组成特征不同。长江沉积物REE含量较高,元素含量变化也大于黄河样品;球粒陨石标准化模式表明长江沉积物的(La/Lu)N、(La/Yb)N、(Gd/Yb)N的值也相应地比黄河沉积物中的高10%左右,分布曲线均呈明显的石倾状,轻重稀土分馏明显,相对富集LREE。且长江样品比黄河样品更富集LREE,但Eu亏损不及黄河样品;两者的北美页岩标准化曲线均呈平坦稍右倾状,具有  相似文献   

4.
长江河流沉积物磁铁矿化学组成及其物源示踪   总被引:4,自引:0,他引:4  
运用电子探针分析了长江干流和主要支流河漫滩沉积物中磁铁矿的元素组成.磁铁矿中的FeO平均含量稍高于其标准组成,而Fe2O3平均含量则明显低于标准组成;Ti、Al、Cr、V、Mn、Mg、Co和Zn等元素在磁铁矿中含量变化大,不同支流的磁铁矿的元素组成不同,同一取样点不同样品磁铁矿的元素组成变化也较大.金沙江、湘江、汉江及长江干流磁铁矿与钛磁铁矿、钛尖晶石、钒钛磁铁矿和铬铁矿等出溶交生,TiO2、Cr2O3和V2O3等元素含量高且变化大.金沙江磁铁矿富Mg、Al和Cr;大渡河、雅砻江和岷江磁铁矿中微量元素含量大多低于0.5%;涪江、汉江磁铁矿富Ti和V,而湘江磁铁矿富Ti和Al;总体上,长江干流上游磁铁矿富Ti,而下游磁铁矿中Ti、Al、Cr、V、Mg和Mn含量低于0.15%.干流磁铁矿的元素组成变化反映主要支流源岩组成及对干流影响程度的差异.  相似文献   

5.
This study investigated the temporal variations of major and trace element contents and controlling factors in the upper reaches of the Xijiang River, SW China. The results showed the major ions principally derived from the weathering of carbonate and silicate rocks, with a seasonal variation impacted by the monsoonal climate. The contents of dissolved trace elements also varied seasonally in the two main tributaries: the Nanpan and Beipan rivers. Most dissolved trace elements such as Mn, Zn and Pb being affected by anthropogenic contributions displayed a large seasonal variability, from onefold to hundred-fold, while V, Rb and U show a relative stable trend uncorrelated with the different seasons, suggesting a natural origin by rock weathering. Suspended particle matter in the Nanpan and Beipan rivers was depleted in Ca, Mg, Na, K and Sr, but enriched in Al, Fe and Sb compared to the upper crust (UC) values. A binary mixture of silicate-rich and carbonate-rich sources dominates the behavior of elements such as Ca and Sr in riverine sediments, while a third end-member with an anthropogenic signature influenced the content of trace elements like Mn, Sb, Pb, Zn, Cd, Cr and Cu. The enrichments of Sb relative to the UC would be related to the mining activity in the studied area. The study highlights the importance of investigating temporal variations of major and trace element contents of rivers controlled by the monsoon climate and impacted by human activity.  相似文献   

6.
依据Stoke定律将长江小于63 μm的沉积物分成4个粒级.将黄河小于63 μm的沉积物分成6个粒级.采用ICP-MS法分别测试了分粒级沉积物的REE含量,结果显示:相同粒级中长江沉积物的∑REE均高于黄河沉积物.长江沉积物REE的丰度遵循元素的“粒度控制律”,即随粒度变细∑REE含量依次增高;黄河沉积物∑REE呈“高-低-高”的不对称马鞍型分布;北美页岩标准化分布曲线均呈右倾状,轻重稀土分馏明显,相对富集LREE,具弱Ce亏损,明显的Eu正异常.长江与黄河沉积物REE组成特征差异与两条河流流域的风化作用及沉积物的矿物组成密切相关,黄河∑REE的马鞍型分布是细粒级中黏土矿物吸附及粗粒级中相对高含量的重矿物富集作用的结果,而长江沉积物随粒级增大∑REE的衰减趋势主要是随粒级增大逐步增加的石英和长石含量的稀释作用所造成.  相似文献   

7.
We investigated the geochemical characteristics of major, trace and rare earth elements and Sr–Nd isotope patterns of bed sediments from the headwaters and upper reaches of the six large rivers draining the Tibetan Plateau (the Jinsha River—Yangtze, Lancang River—Mekong, Nujiang River—Salween, Huang He—Yellow, Indus, and Yarlung Tsangpo—Brahmaputra). By using Ca/Al versus Mg/Al, La/Sc versus Co/Th, and 87Sr/86Sr versus εNd (0) binary differentiation diagrams of provenance, some typical contributors to the different catchment sediments can be identified. In the Three-River (the Jinsha, Lancang, and Nujiang Rivers) tectonomagmatic belt, acidic–intermediate-acidic volcanic rocks are very important provenance of sediments. Carbonate rocks and Permian Emeishan basalts are dominant in the Jinsha River. The Yellow River sediments have similar geochemical characteristics with loess in catchments. The Indus and Yarlung Tsangpo Rivers sediments are mainly from ultra-K volcanic rocks and Cenozoic granitoids widely distributed in the Indus–Yarlung suture. The intensity of chemical weathering in these river catchments is evaluated by calculating the chemical indices of alteration (CIA) of sediments and comparing them with bedrocks. The CIA values of the six river sediments are from 46.5 to 69.6, closing to those of bedrocks in the corresponding catchment, which indicates relatively weak chemical weathering intensity. Lithology, climate, and topography affect the chemical weathering intensity in these river catchments.  相似文献   

8.
Pramod Singh 《Chemical Geology》2010,269(3-4):220-236
Major, trace and REE compositions of sediments from the upper Ganga River and its tributaries in the Himalaya have been examined to study the weathering in the Himalayan catchment region and to determine the dominant source rocks to the sediments in the Plains. The Ganga River rises in the Higher Himalaya from the Higher Himalayan Crystalline Series (HHCS) bedrocks and traverses over the Lesser Himalayan Series (LHS) and the Himalayan foreland basin (Siwaliks) rocks before entering into the Gangetic Plains. The major element compositions of sediments, reflected in their low CIA values (45.0–54.7), indicate that silicate weathering has not been an important process in the Himalayan catchment region of the Ganga River. Along the entire traverse, from the HHCS through LHS and the Siwaliks, the sediments from the tributaries and the mainstream Ganga River show higher Na2O, K2O, CaO and silica. This, and the higher ratios of La/Sc, Th/Sc and lower ratios of Co/Th, suggest that the source rocks are felsic. The fractionated REE patterns and the significant negative Eu anomalies (Eu/Eu? = 0.27–0.53) indicate highly differentiated source. Moreover, the comparison of the sediments with different source rock lithologies from the HHCS and the LHS for their major elements clearly suggests that the HHCS rocks were the dominant source. Further, comparison of their UCC (upper continental crust) normalized REE patterns suggests that, among the various HHCS rocks, the metasediments (para-gneiss and schist) and Cambro-Ordovician granites have formed the major source rocks. The Bhagirathi and Alaknanda River sediments are dominantly derived from metasediments and those in the Mandakini River from Cambro-Ordovician granites. The resulting composition of the sediments of the Ganga River is due to the mixing of sediments supplied by these tributaries after their confluence at Devprayag. No further change in major, trace and rare earth element compositions of the sediments of the Ganga River after Devprayag up to its exit point to the Plains at Haridwar, suggests little contribution of the Lesser Himalayan and Siwalik rocks to the Ganga River sediments.  相似文献   

9.
郝立波  马力  赵海滨 《地球化学》2004,33(2):131-138
对大兴安岭北部区域性中生代火山岩和残积土壤化学成分的研究结果表明,岩石风化成土过程中元素存在明显的均一化作用.元素含量高的岩石风化形成的土壤中元素含量相对降低,反之则相对增高,导致残积土壤中元素含量差异明显小于基岩.不同元素的均一化能力不同,在主元素中,Al2O3和SiO2的均一化能力相对较弱,微量元素的均一化能力普遍较强.元素的均一化能力受元素晶体化学性质、元素存在形式、矿物抗风化能力、气候、水动力条件及生物等因素影响.  相似文献   

10.
The major, trace and rare earth elements geochemistry and clay mineral compositions in the river bed sediments from lower reaches of Godavari river suggest that they are derived from weathering of felsic rocks. Trace and rare earth elemental compositions indicate evidence of sedimentary sorting during transportation and deposition. Lower concentrations of transition elements, such as V, Ni and Cr imply enrichment of felsic minerals in these bed sediments. The REE pattern in lower Godavari sediments is influenced by the degree of source rock weathering. The light rare earth elements (LREE) content are indicating greater fractionation compared to the heavy rare earth elements (HREE). A striking relationship is observed between TiO2 and gZREE content suggesting a strong control by LREE-enriched titaniferous minerals on REE chemistry. Shale-normalized REE pattern demonstrate a positive Eu anomaly, suggesting weathering of feldspar and their secondary products, which are enriched in Eu. Chondrite-normalised REE pattern is characteristic of felsic volcanic, granites and gnessic source rocks. Trace elemental compositions in sediments located near urban areas suggest influence of anthropogenic activity. Chemical Index of Alteration (CIA) is high (avg. 65.76), suggesting a moderate chemical weathering environment. X-ray diffraction analysis of clay fraction shows predominance of clay minerals that are formed because of the chemical weathering of felsic rocks.  相似文献   

11.
In the northern part of the Indian sub-continent, the Ganga alluvial plain (GAP) feeds its weathering products to the Ganga–Brahmaputra River system, one of the world’s largest fluvial systems. The authors present a geochemical study of the GAP weathering products transported by the Gomati River (the Ganga River tributary) to understand weathering processes of an alluvial plain in a humid sub-tropical climate. A total of 28 sediment samples were collected during the monsoon season and were analysed by X-ray fluorescence spectrometry for 25 major and trace elements. Bulk chemistry of the channel, flood and suspended sediments mostly consists (>90%, >80% and >75%, respectively) of three elements; Al, Si and Fe. Major element concentrations normalised with respect to upper continental crust (UCC) show strong depletion of highly mobile elements (Na, Ca) and enrichment of immobile elements (Ti, Si). Silica enrichment in the sand fraction is probably caused by chemical weathering of feldspar. Mineral sorting during fluvial transportation acts as the single important factor that controls the geochemistry of these weathering products and also strongly influences major and trace element distribution in the individual sediment samples. Trace element (Ba, Cr, Cu, Nb, Ni, Pb, V and Zn) concentrations were strongly correlated with major element (Si, Al, Fe, Mn and K) concentrations indicating that the abundance of trace elements is controlled by the same processes that control the major element distribution in these sediments.The GAP weathering products were geochemically distinguished as arkose to litharenite in rock classification. Chemical mobility, normalised with respect to TiO2 in UCC, indicates that Si, Na, Zr, Ba and Sr, mainly derived from feldspar, muscovite and biotite, are lost during weathering. Iron and Zn remained immobile during weathering and were strongly adsorbed by phyllosilicates and concentrated in fine-grained sediment fractions. The chemical index of alteration indicates that the GAP has experienced chemical weathering of incipient to moderate intensity. The GAP weathering products also demonstrated a progressive incomplete alteration in the alluvial sequence made-up of the Himalayan-derived sediments. A model has been proposed to better understand weathering processes and products of the GAP in temporary storage of ∼50 ka in a humid sub-tropical climate.  相似文献   

12.
To obtain a better understanding of the source compositions of the river sediments around the Yellow Sea and their relationship with source rocks, elements and strontium-neodymium (Sr–Nd) isotopes of different grain-sizes (silt and clay populations) and chemical (labile and residual phases) fractionations in riverine sediments were studied extensively. These results clearly revealed a systematic compositional disparity between Korean river (KR) and Chinese river (CR) sediments, especially in the residual (detrital) fraction. The geochemical dissimilarity between these might reflect inherited signatures of their source rocks but with minor control from chemical weathering. In particular, the remarkable enrichment of some elements (iron (Fe) and magnesium (Mg)) and the behavior of large ion lithophile elements (e.g., barium (Ba), potassium (K) and Sr) during weathering as well as less-radiogenic Sr isotopic compositions implies that CR sediments might be weathering products of relatively more mafic rocks, with abundant ferromagnesian and plagioclase feldspar minerals, compared with KR sediments derived from silicic granites with relatively higher quartz and potassium feldspar contents. This different petrological rationale is clearly evident in an A–CN–K diagram, which estimated the source rock of CR sediments as granodioritic, a composition that reflects accurately the average composition of weathered continental crust in China. The recognition of such geochemical systematics in two river sediments, especially in grain-size and chemically partitioned data, may contribute to the establishment of provenance tracers for the Yellow Sea and East China Sea sediments with multi-sources as well the dust deposition in the western Pacific.  相似文献   

13.
Dongping Lake area, located in the lower reaches of Yellow River, is an ideal place to study the changes of modern river and lake sedimentary environment. The sediment samples of Dawen River, Yellow River, and Dongping Lake were collected, and the major elements, trace elements and organic matter geochemical composition of the samples were analyzed. Cluster analysis, characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication. The results show that the contents of SiO_2, Na_2O, TiO_2 and Zr in sediments of Dawen River and Yellow River are relatively high, and the contents of iron and manganese oxides, organic matter, CaO, P_2O_5 and Sr in lake sediments are relatively high. That reveals the differences of sedimentary environments between the rivers and the lake. The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season; the δCe,ΣREE and REE's ratios in the sediments of the Yellow River reflect the influence of the Loess source; and the distribution of elements changes along the flow direction during the flood season. The characteristics of p H, element composition and LREE HREE fractionation of the lake sediments indicate that the sediment source is complex, and the lake environment is affected by the flood season. The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment, material composition and characteristics of flood season of rivers and the lake in the study area.  相似文献   

14.
The influence of hydrodynamics on the chemical composition of sediments is based on the uneven distribution of element abundances in different size fractions. In this study, 72 size‐fractional sediments from the Huanghe (Yellow River) and Changjiang (Yangtze River) riverbeds were measured with XRD, SEM, ICP‐AES and ICP‐MS. The analysis results show that the mineral and chemical characteristics change with grain size in the Huanghe and Changjiang sediments. According to the principal components analysis, three independent geochemical factors were found. The first factor elements, Zr, Hf, Th, U, Y, La and TiO2 are influenced by the existence of heavy minerals. The second factor elements, Al2O3, alkalis, alkaline earth (excluding Ca and Sr) and most of the transitional metals are dominated by clay minerals. The third factor group includes Ca and Sr, which were controlled by calcium‐bearing mineral contents and chemical weathering intensities. The various grain size distributions greatly affect the mineralogical and chemical compositions of bulk sediments. Compared to other size fractions, the 5–6PHI size fractions of the Huanghe and Changjiang sediments have special mineralogical and chemical compositions, and intermediate volume percentages. Weight or volume percentage of each size fraction may be more suitable than mean grain‐size of the bulk sediment to elucidate the grain size effects. Chemical Index of Alteration (CIA) values increase steeply with decreasing grain size, while Weathering Index of Parker (WIP) values are relatively stable. Because of the big influence of the abundance of clay minerals on CIA values, it is questionable to use CIA as a proxy of weathering intensity. Considering the clay mineral effects, stability in values and heterogeneous material properties, WIP has the potential to indicate the chemical weathering intensity of sediments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
南黄海北部晚更新世以来常量元素记录的化学风化作用   总被引:1,自引:0,他引:1  
以南黄海北部高沉积速率柱状样DLC70-3孔作为研究对象,对沉积物的黏土矿物和常量元素地球化学组成进行了综合分析。结果显示,DLC70-3孔沉积物中黏土矿物组合以伊利石为主,其次为蒙皂石,绿泥石和高岭石含量较低;绝大部分样品中伊利石与蒙皂石含量的比值<6,表明沉积物主要来源于黄河物质的输送。研究认为DLC70-3孔沉积物的化学风化指标CIA值受到海平面变化和源区气候变化共同控制,其中源区的气候变化为主要控制因素,而海平面变化造成的机械沉积分异作用主要影响27.80~38.00 m(MIS 4)层位沉积物的CIA值。CIA值显示在MIS 5和MIS 3期大陆化学风化作用较强,与内陆黄土高原地区夏季风和化学风化指标的变化趋势一致,尤其是在MIS 3早期(40~60 ka)记录的化学风化作用非常强,反映了黄河流域地区出现强夏季风降雨过程。  相似文献   

16.
长江上游水系沉积物锶-钕同位素组成及物源示踪   总被引:3,自引:1,他引:2  
泥沙资料表明,现代长江干流沉积物主要源自上游地区。因此,长江上游干支流沉积物主控关系及其源汇过程在长江水系沉积物物源示踪研究中极为重要。为探讨上述过程,详细测定了上游水系沉积物Sr-Nd同位素组成。结果显示,金沙江及闽江沉积物具有较高的εNd(0)值,主要受控于流域内大面积分布的峨眉山玄武岩的高εNd(0)背景值;嘉陵江水系沉积物具有相对较低的εNd(0)值,反映了其流域内源岩对沉积物Nd同位素组成的控制;与Nd同位素组成相比,水系沉积物87Sr/86Sr值具有更大的变化范围,表明除源岩因素外,沉积物Sr同位素组成受更为复杂的因素制约。支流与干流沉积物Sr-Nd同位素组成对比表明,长江上游干流沉积物主要来源于金沙江流域内的源岩,金沙江流域内的表壳岩系主导了上游干流沉积物的Sr-Nd同位素组成。  相似文献   

17.
为辨识黄河和长江入海沉积物中角闪石的物源差异,对采自黄河口段、长江口段以及废黄河口和苏北沿岸,共26个样点、38组粒度粗细不同的碎屑角闪石进行了矿物元素地球化学测试,获得了这些角闪石群体的50种常量和微量元素含量值.结果表明:不同粒级测量的同源角闪石元素含量除少数大离子活泼元素相对偏差较大之外,大部分元素含量差异性较小...  相似文献   

18.
The elemental composition of organic matter and the major and trace element compositions of stream sediments from Myanmar (Ayeyarwady and Sittaung rivers) and Thailand (Mekong and Chao Phraya rivers, and their tributaries) were determined to examine their distributions, provenance, and chemical weathering processes. Higher total organic carbon (TOC) and total nitrogen (TN) contents in the finer grained sediments indicate hydrodynamic energy may control their distributions. TOC/TN ratios indicate inputs of both aquatic macrophyte and higher vascular plant material to the river sediments. The major element abundances of the sediments are characterized by predominance of SiO2 in coarser fractions and a marked negative correlation with Al2O3, representing primary grain size primarily control on SiO2 content. Marked depletion of most labile elements (Na2O, CaO, K2O, Ba and Sr) relative to UCC (upper continental crust), indicate destruction of feldspar during chemical weathering in the source area or during transport. However, enrichment of some high field strength elements (Zr, Th, Ce and Y) relative to UCC and higher Zr/Sc ratios indicate moderate concentration of resistant heavy minerals in finer-grained samples. Discriminant diagrams and immobile trace element characteristics indicate that the Mekong, and Chao Phraya river sediments were largely derived from felsic sources with compositions close to typical rhyolite, dacite/granodiorite, UCC, I- and S-type granites. Relative enrichment of ferromagnesian elements (e.g. MgO, Cr, Ni) and high Cr/V and low Y/Ni ratios in Ayeyarwady and Sittaung sediments indicate the presence of a mafic or ultramafic component in their sources. The ICV (Index of Compositional Variability), CIA (Chemical Index of Alteration), PIA (Plagioclase Index of Alteration), αAl, Rb/Sr and K2O/Rb ratios indicate that the Ayeyarwady and Sittaung sediments record low to moderate degrees of chemical weathering in their source, compared to moderate to intense chemical weathering in the Mekong and Chao Phraya river basins. These results are compatible with existing major ion data for river waters collected at the same locations.  相似文献   

19.
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM)in the Yellow River were investigated on the samples collected from 29 hydrological monitoring stations in the mainstem and several major tributaries during 2004 to 2007.TheδD andδ~(18)O values of the Yellow River water vary in large ranges from-32‰to-91‰and from-3.1‰to-12.5‰,respectively.The characters of H and O isotope variations indicate that the major sources of the Yellow River water are meteoric water and snow melting water,and water cycle in the Yellow River basin is affected strongly by evaporation process and human activity.The average SPM content(9.635g/L)of the Yellow River is the highest among the world large rivers.Compared with the Yangtze River,the Yellow River SPM has much lower clay content and significantly higher contents of clastic silicates and carbonates.In comparison to the upper crust rocks,the Yellow River SPM contains less SiO_2,CaO,K_2O and Na_2O,but more TFe_2O_3,Co,Ni,Cu,Zn,Pb and Cd.The abnormal high Cd contents found in some sample may be related to local industrial activity.The REE contents and distribution pattern of the Yellow River SPM are very close to the average value of the global shale.The averageδ~(30)Si_(SPM)in the Yellow River(-0.11‰)is slightly higher than the average value(-0.22‰)of the Yangtze River SPM.The major factors controlling theδ~(30)Si_(SPM)of the Yellow River are the soil supply,the isotopic composition of the soil and the climate conditions.The TDS in the Yellow River are the highest among those of world large rivers.Fair correlations are observed among Cl~-,Na~+,K~+,and Mg~(2+)contents of the Yellow River water,indicating the effect of evaporation.The Ca~(2+)and Sr~(2+)concentrations show good correlation to the SO_4~(2-)concentration rather than HCO_3~-concentration,reflecting its origin from evaporates.The NO_3~-contents are affected by farmland fertilization.The Cu,Zn and Cd contents in dissolved load of the Yellow River water are all higher than those of average world large rivers,reflecting the effect of human activity.The dissolved load in the Yellow River water generally shows a REE distribution pattern parallel to those for the Yangtze River and the Xijiang River.Theδ~(30)Si values of the dissolved silicon vary in a range from 0.4‰to 2.9‰,averaging1.34‰.The major processes controlling the D_(Si)andδ~(30)Si_(Diss)of the Yellow River water are the weathering process of silicate rocks,growth of phytolith in plants,evaporation,dissolution of phytolith in soil,growth of fresh water diatom,adsorption and desorption of aqueous monosilicic acid on iron oxide and human activities.The averageδ~(30)Si_(Diss)value of the Yellow River is significantly lower than that of the Nile River,Yangtze River and Siberia rivers,but higher than those of other rivers,reflecting their differences in chemical weathering and biological activity.Theδ~(34)S_(SO4)values of the Yellow River water range from-3.8‰to 14.1‰,averaging 7.97‰.There is some correlation between SO_4~(2-)content andδ~(34)S_(SO4).The factors controlling theδ~(34)S_(SO4)of the Yellow River water are the SO_4 in the meteoric water,the SO_4 from gypsum or anhydrite in evaporite rocks,oxidation and dissolution of sulfides in the mineral deposits,magmatic rocks and sedimentary rocks,the sulfate reduction and precipitation process and the sulfate from fertilizer.The~(87)Sr/~(86)Sr ratios of all samplesrange from 0.71041 to 0.71237,averaging 0.71128.The variations in the~(87)Sr/~(86)Sr ratio and Sr concentration of river water are primarily caused by mixing of waters of various origins with different~(87)Sr/~(86)Sr ratios and Sr contents resulting from water-rock interaction with different rock types.  相似文献   

20.
In addition to mineral analyses, REE and trace element geochemical characteristics of fine- and coarse-grained sands in the Ordos deserts and other sediments in surrounding areas are investigated.Commonly the samples consist of quartz, feldspar and muscovite and less clinochlore, dolomite and ankerite. In few samples muscovite is absent.REE and trace compositions are spatially uniform for the same grain-size sands, suggesting that they could have the same sources or/and were well homogenized. However, fine- and coarse-grained sands in the Ordos deserts show different REE and trace element compositions. Fine-grained sands show higher contents of REE and trace elements than those of coarse-grained sands. They differ in Eu anomalies and (La/Yb)N ratios although both fractions are characterized by the steep LREE and smooth HREE patterns. The fine- and coarse-grained sands are also distinct in some characteristic element ratios (e.g., Th/Co, La/Sc, Th/Sc and Y/Ni).REE and trace element patterns of the two different grain-size fractions are closely associated with geological properties of individual sources rather than the mineralogical differentiation induced by wind sorting. The coarse-grained sands mainly resulted from sandstone weathering in the Ordos deserts and movements of coarse particles by wind. REE and trace element patterns of fine-grained sands in the Ordos deserts differ from those of sandstones in the Ordos deserts, the alluvial sands in the surrounding mountains and the coarse fluvial sands in the Yellow River. They resemble the fine fluvial sands in the Yellow River. In addition, arid areas of Northwest China such as the Tarim Basin and the Alxa Plateau should not be ruled out as the source of the fine-grained sands in the Ordos deserts because these arid areas reserve plenty of fine-grained sediments and also located in the upwind directions of the Ordos deserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号