首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal and optical remote sensing data were used to investigate the spatial and temporal distribution of sea surface temperature (SST) and of suspended particulate matter (SPM) in the southern North Sea. Monthly SST composites showed pronounced seasonal warming of the southern North Sea and delineated the English coastal and continental coastal waters. The East-Anglia Plume is the dominant feature of the English coastal waters in the winter and autumn SPM composites, and the Rhine region of freshwater influence (ROFI), including the Flemish Banks, is the dominant feature of the continental waters. These mesoscale spatial structures are also influenced by the evolution of fronts, such as the seasonal front separating well-mixed water in the southern Bight, from the seasonally stratified central North Sea waters. A harmonic analysis of the SST and SPM images showed pronounced seasonal variability, as well as spring-neap variations in the level of tidal mixing in the East Anglia Plume, the Rhine ROFI and central North Sea. The harmonic analysis indicates the important role played by the local meteorology and tides in governing the SST and near-surface SPM concentrations in the southern North Sea. In the summer, thermal stratification affects the visibility of SPM to satellite sensors in the waters to the north of the Flamborough and Frisian Fronts. Haline stratification plays an important role in the visibility of SPM in the Rhine ROFI throughout the year. When stratified, both regions typically exhibit low surface SPM values. A numerical model study, together with the harmonic analysis, highlights the importance of tides and waves in controlling the stratification in the southern North Sea and hence the visibility of SPM.  相似文献   

2.
We examine characteristics in the variability of sea surface temperature (SST) in the Yellow/East China Sea during the boreal winter (December–January–February) for the period 1950–2008 in observations. It is found that the mean SST in the Yellow Sea/East China Sea gradually increases during recent decades. A warming trend of a basin scale SST is significant in most of the regions in the Yellow/East Sea, which is well explained by the variability of the first empirical orthogonal function SST mode. We suggest one candidate mechanism that the North Pacific oscillation (NPO)-like sea level pressure play an important role to warm the Yellow/East China Sea. Anomalous anticyclonic circulation, which is the southern lobe of NPO-like sea level pressure over the North Pacific, causes a weakening of northerly mean winds over the Yellow/East China Sea during winter. This contributes to increase in the SST in the Yellow/East China Sea through the changes in the latent heat and sensible heat fluxes.  相似文献   

3.
A long-term analysis of seasonal cycles of inorganic nutrients by means of a seasonal index is presented for the German Bight and the southern Wadden Sea (SE North Sea). Multivariate analysis for the German Bight data series revealed dependence of ammonium and phosphate index time series on dissolved inorganic nitrogen concentrations and riverine nutrient loads. Both indices are assumed to reflect seasonal dynamics of remineralisation processes associated with increased supply of organic matter. Temporal analysis revealed breaks in nutrient dynamics in 1970/1972 and 1979/1980. After 1970/1972, an unprecedented increase in the summer concentrations of mineralisation endproducts with correspondingly low index values were observed, which further declined after 1979/1980. Further breaks for Wadden Sea data series were identified in 1985 and 1988/1989. The indicative value of the temporal breaks with respect to eutrophication is discussed against the background of changes in meteoclimatic factors and local environmental conditions. Collated information on eutrophication effects was consistent with the observed breaks. It is suggested that the break in 1970/1972 in the German Bight was the first sign of ecosystem response to eutrophication in the SE North Sea.  相似文献   

4.
The hydrography of the Laptev Sea is significantly influenced by river water and sea-ice processes, which are highly variable over the annual cycle. Despite of an estuarine structure the inner and outer shelf regions are decoupled at times as documented by the stability of a warm intermediate layer formed during summer below the Lena River plume. We demonstrate that a remnant of this warm layer is preserved below the fast ice until the end of winter, while only slightly farther to the north, offshore of the landfast ice in the polynya region, the pycnocline is eroded and no signature of this layer is found. The warm intermediate layer (WIL) formed during summer can be used as tracer for Laptev Sea shelf waters throughout the winter. Thereby, residence times of southern Laptev Sea waters can be estimated to be at least from summer to the end of winter/spring of the following year.  相似文献   

5.
Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter.  相似文献   

6.
The exceptional Oder flood in summer 1997 was a unique event in order to investigate the impacts on and the consequences for the ecosystem of the Baltic Sea of about 6.5 km3 additional water loaded with nutrients and contaminants and discharged within only 5 weeks. About 15 institutions participated in this investigation in both the Szczecin Lagoon and the Pomeranian Bight. The Baltic Sea Research Institute Warnemünde studied the water and nutrient inflow, the spreading of the Oder discharge, and the impact of the discharge on the ecosystem. The main topic of the presented investigations is a detailed study of the spatial and temporal spreading of the extreme river discharge in the Pomeranian Bight and the southern Baltic Sea by satellite data, ship observations and continuous buoy measurements as well as numerical modelling. The meteorological conditions were characterized by mainly easterly winds which guided the outflowing riverine water along the German coast into the Arkona Sea. The spatial and temporal development of the distribution patterns of the Oder discharge was monitored by about 80 Sea Surface Temperature (SST) images of NOAA satellites. Shipborne measurements showed that the vertical extent of the Oder plume ranged between 5 and 7 metres. The concentrations of inorganic nutrients, except higher silicate, were comparable to typical winter/early spring values (seasonal maximum) in this region. The high dilution effect of the flood water reduced the concentration of contaminants and thus, prevented a direct negative impact of trace metals and chlorinated organic compounds on the marine environment. Coupled physical-biochemical modelling in combination with SST-images demonstrated the temporal development and satellite data in the visible spectral range delivered the maximum extent of discharged river water into the southern Arkona Sea where a further western transport was limited by the upwelling region off Hiddensee. Thus, all detected effects of the Oder flood were confined to the Pomeranian Bight and the southern Arkona Sea, without long-term consequences for the ecosystem.  相似文献   

7.
The trends of malformation prevalence in embryos of dab, Limanda limanda, in the southern North Sea after the year 1990 mirrored the drop in major pollutants in the rivers draining into the German Bight. Despite this general decline, we detected a pollution event in the southern North Sea in winter 1995/1996 employing the prevalence of malformations in pelagic dab embryos as an indicator. An abrupt rise in malformation prevalence in the embryos of dab, corresponded to a dramatic increase in DDT levels in parent fish from the same area, indicating a hitherto unnoticed introduction of considerable quantities of DDT into the system.  相似文献   

8.
The distribution and abundance of thaliaceans were studied in relation to physical and biological variables during summer and winter in the northwest continental shelf of South China Sea. Based on the topography and water mass of the surveyed region, it was divided into three subregions: region I (onshore waters of the east Leizhou Peninsula), region II (onshore waters of the east and southeast Hainan Island) and region III (offshore waters from Leizhou Peninsula to Hainan Island). During summer due to a strong southwest monsoon, a cold eddy and coastal upwelling dominated in regions I and II, respectively, whereas the onshore and offshore waters were vertically mixed during winter due to a strong northeast monsoon. A total of 18 thaliacean species (including 3 subspecies) were collected. The mean species richness was higher in summer compared to winter, with the occurrence of higher values during summer and winter at region II and region III, respectively. The average thaliacean abundance is also higher in summer than in winter, with higher values at region I in summer and no significant difference among three subregions in winter. Doliolum denticulatum and Thalia democratica were the dominant species during summer and winter. The results suggested that the seasonal and spatial distribution of thaliacean richness was considered to be the result of physical factors such as temperature and ocean current in summer and winter. Spatial distribution of thaliacean abundance was affected by chlorophyll a concentration increased by the occurrence of coastal upwelling and cold eddy in summer. Southwest and northeast monsoons are shown to play an important role in shaping the distribution of species richness and abundance of thaliaceans in the northwest continental shelf of South China Sea.  相似文献   

9.
Seasonal variations in the origin of lead in snow at Dye 3, Greenland   总被引:1,自引:0,他引:1  
The isotopic composition and concentration of lead has been measured in fresh and slightly aged snow collected at Dye 3 in southern Greenland during one full year. The lead concentration displayed large variations ranging from 14–3016 pg/g in April (spring) to 3–6 pg/g in September (summer) while the isotopic ratios changed in regular manner during the year. The 206Pb/207Pb ratios were 1.15 from spring to mid-summer snow, and increased in late summer to early autumn, reaching 1.20 in winter. These isotopic data indicate that the lead in the autumn to winter snow originated in North America, while that in spring to mid-summer snow is from Eurasia.  相似文献   

10.
SRES A2情景下中国气候未来变化的多模式集合预测结果   总被引:56,自引:3,他引:53       下载免费PDF全文
采用政府间气候变化委员会资料中心的模式预测结果,本文分析了SRES A2温室气体和气溶胶排放情景下中国大陆21世纪前30年的10年际气候变化趋势. 研究揭示:大陆冬季和夏季表面温度、表面最高温度和最低温度分别升高0.3~2.3℃、0.1~2.0℃、0.5~2.7℃,增幅大体上呈现东西向带状分布,由南至北升温逐渐加强,且增幅随时间加大. 此外,上述三气候要素冬季升温幅度要大于同期夏季、表面最低温度升幅要强于同期表面最高温度,冬季和夏季表面温度的季节内变化范围减小. 冬季东亚地区海平面气压异常幅度在-1.0hPa至0.4hPa之间变化,呈东西向带状分布,表现为南正北负、随时间推进异常幅度有所加大,正负交界面向南扩展;同时,东北、华北和西部海平面气压负异常较大. 夏季海平面气压异常空间分布与冬季相似. 2001~2030年,青藏高原大部、大陆东南部和河套大部分地区降水量增加0.1~0.8mm/d.  相似文献   

11.
Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea and its mechanism were investigated using empirical orthogonal function (EOF) analysis with satellite sea surface heights over the northern East/Japan Sea and a three-dimensional circulation model. The spatial structure and temporal variation of first EOF mode, which explains about 64% of the total variance, indicate that a large cyclonic circulation in the northern East/Japan Sea shows a semi-annual variation with maximum strength in summer and winter. According to numerical model result, the Liman Cold Current, accepted as a major current in the northern East/Japan Sea, is well mixed vertically by the winter monsoon and the current in the upper layer has a relatively deep structure, with a maximum westward speed of about 20 cm/s in winter. On the other hand, in summer the current has a stronger baroclinic structure of velocity than in winter. Numerical experiments showed that in summer the temporal variation of upper layer circulation is controlled by thermal forcing, such as sea surface heat flux and inflow of heat transport into the East/Japan Sea through the Korea/Tsushima Strait. Moreover, the cyclonic circulation in the upper layer of the northern East/Japan Sea is also generated and strengthened by the positive wind stress curl occupying most of the East/Japan Sea during the winter. The seasonal variation of each forcing that drives the circulation is responsible for the strength or weakness of the upper layer circulation in the northern East/Japan Sea. The contribution of each forcing to the seasonal variation of the upper layer circulation is examined through sensitivity experiments. According to these numerical experiments, the upper layer circulation in the northern East/Japan Sea is strengthened twice a year, in winter and summer, and this semi-annual variation is determined by a combination of wind (winter) and thermal (summer) forcing.  相似文献   

12.
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34°N and 35°N, 122°E and 124°E) of the Yellow Sea is mainly occupied by relatively high temperature water (T>10 °C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T<10 °C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34°N and 37°N, 123°E and 126°E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer.  相似文献   

13.
The role of microbial sulfate reduction on organic matter oxidation was studied quantitatively in temperate intertidal surface sediments of the German Wadden Sea (southern North Sea) on a seasonal base in the years 1998–2007. The sampling sites represent the range of sediments found in the back-barrier tidal area of Spiekeroog Island: sands, mixed and muddy flats. The correspondingly different contents in organic matter, metals, and porosities lead to significant differences in the activity of sulfate-reducing bacteria with volumetric sulfate reduction rates (SRR) in the top 15 cm of up to 1.4 μmol cm?3 day?1. Depth-integrated areal SRR ranged between 0.9 and 106 mmol m?2 day?1, with the highest values found in the mudflat sediments and lower rates measured in sands at the same time, demonstrating the impact of both temperature and organic matter load. According to a modeling approach for a 154-km2 large tidal area, about 39, 122, and 285 tons of sulfate are reduced per day, during winter, spring/autumn, and summer, respectively. Hence, the importance of areal benthic organic matter mineralization by microbial sulfate reduction increases during spring/autumn and summer by factors of about 2 and 7, respectively, when compared to winter time. The combined results correspond to an estimated benthic organic carbon mineralization rate via sulfate reduction of 78 g C m?2 year?1.  相似文献   

14.
Modeling the circulation in the Gulf of Tonkin, South China Sea   总被引:4,自引:0,他引:4  
The circulation in the Gulf of Tonkin (Beibu Gulf) was studied using the Princeton Ocean Model, which was forced with the daily surface and lateral boundary fluxes for 2006 and 2007, as well as tidal harmonics and monthly climatological river discharges. In the southern Gulf, the vertically averaged circulation was anti-cyclonic in summer and changed to cyclonic in winter. Although it was highly correlated with the local wind, the southern gyre was driven primarily by the South China Sea (SCS) general circulation from the south. Flows in the Qiongzhou Strait that played a significant role in determining the circulation variability in the northeastern Gulf could be eastward or westward at any given day in summer or winter, but the seasonal mean current was eastward from late spring through summer and westward during the rest of the year, with an annual mean westward transport of ~0.1 Sv into the Gulf. Different water masses were distinguished at the surface with the warm and saline SCS water in the south, relatively fresh plume waters along the northern and western coasts of the Gulf, and the mixture of the two in between. At lower levels, two cold water masses were identified in the model, and each had T/S distributions qualitatively similar to the observations obtained in 2007. These two water masses were produced throughout the winter, sheltered from the surface warming by a thermocline as the season progressed, and eventually disappeared in late fall.  相似文献   

15.
The aim of this paper is to test the ability of neural network approaches to hindcast the spring standardized precipitation index on a 6‐month time scale (SPI6) in Portugal, based on winter large‐scale climatic indices. For this purpose, the linkage of the spring SPI time series with the winter North Atlantic Oscillation (NAO) and the sea surface temperature (SST) was investigated by means of maps of the correlation coefficient for the period from October 1910 to September 2004. The results indicate that the winter NAO is a good predictor for the SPI6 of the spring (SPI6 finishing in April, May and June, SPI6April, SPI6May and SPI6June, respectively) for the northern, central and southern regions of Portugal. The winter SST1 (area of the Mediterranean Sea) must only be considered for the northern region, and the winter SST3 (area of the North Atlantic between Iberia and North America) only for the southern region. Spatial maps of predictive SPI6 for April, May and June were created and validated. The neural models explained more than 81% of the total variance for the SPI6April and SPI6May and more than 64% of the total variance for the SPI6June. Probability maps were also developed considering the values predicted by the neural methods for the spring months and all drought categories (moderate, severe and extreme). These maps indicating the probability of droughts can provide valuable support for the integrated planning and management of water resources throughout Portugal. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP>0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP<0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.  相似文献   

17.
Extensive and collocated measurements of several aerosol parameters were made over the eastern Arabian Sea, during the inter-monsoon and summer monsoon seasons of 2003 as a part of the Arabian Sea Monsoon Experiment (ARMEX). Associated with the seasonal changes in the synoptic wind fields from northeasterly/easterly to westerly/northwesterly, the aerosol characteristics and columnar optical depth show large variations. Consequently, the atmospheric forcing is found to increase from March to April and then to decrease consistently towards June. However, the magnitude of the forcing efficiency of aerosols continuously decreases from winter to summer. Such temporal changes in radiative forcing need to be accounted for in reducing the uncertainty in aerosol climate impact.  相似文献   

18.
Based on TIDI mesospheric wind observations, we analyzed the semidiurnal tide westward zonal wavenumber 1 and 2 (SW1 and SW2) component seasonal, inter-annual variations, and possible sudden stratospheric warming (SSW) related changes. Major findings are as follows: (1) The SW1 has a peak near the South Pole during the December solstice and near the North Pole during the March equinox. (2) The SW2 peaks at 60S and 60N mostly during winter solstices. The SW2 also peaks during late summer and early fall in the northern hemisphere. (3) The QBO effect on the semidiurnal tide is much weaker than that on the diurnal tide. The March equinox northern SW1 zonal amplitude appears to be stronger during the westward phase of the QBO, which is opposite of migrating diurnal tide QBO response. (4) Possible SSW event related changes in the semidiurnal tide are significant but not always consistent. Enhancements in the mid-latitude SW2 component during SSWs are observed, which may be related to the increase of total ozone at mid and high latitudes during SSW events. TIDI observations also show a decrease in the SW2 in the opposite hemisphere during a southern SSW event in 2002. Small increases in the high latitude SW1 in both hemispheres during the 2002 southern SSW event were recorded.  相似文献   

19.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

20.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号