首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Garnet–clinopyroxene ultra‐high‐pressure (UHP) rocks from the northern Bohemian Massif contain zircon with micro‐diamond inclusions. Trace element concentrations, oxygen and hafnium isotopic composition and U–Pb age of distinct textural domains in zircon characterize their growth conditions and temporal evolution. Diamond‐bearing zircon mantle domains with relicts of oscillatory zoning have uniform Th/U ratios (~0.1–0.2), high‐Ti contents (110–190 ppm, corresponding to temperatures of at least 1100 °C), and some (two of 17 mantle analyses) preserve steep heavy rare earth element (HREE) patterns with YbN/GdN = 10–11, with a weak negative Eu anomaly. These signatures are consistent with crystallization from a melt under UHP/ultra‐high‐temperature (UHT) conditions. Some of the bright‐cathodoluminscence (CL) rims preserve Th/U and Ti values characteristic of the zircon mantles, but others show elevated Th/U ratios of ~0.3–0.4 and lower Ti contents (20–40 ppm; only 13 ppm in a rare low‐CL outer rim). As they feature flat HREE patterns and negative Eu anomalies and commonly make embayments and truncate the mantle zoning, we suggest that they have formed through recrystallization in the solid state during exhumation of the rock, when both garnet and plagioclase were stable. The three zircon domains, that is, cores, mantles and rims, yield U–Pb concordia ages of 340.9 ± 1.5, 340.3 ± 1.5 and 341.2 ± 3.4 Ma respectively. When linked to the previously reconstructed P–T path of the rock, the error limits of the zircon mantle and rim ages constrain the exhumation of the rocks from depth of ~140 km (UHP) to ~80 km (HP) to a minimum rate of 1.5 cm yr?1. The zircon cores are heterogeneous in terms of Th/U ratio (below 0.1 but also above 0.2) and REE characteristics, and their εHf values scatter between ?15.7 and +4.8 with similar values for individual domains within a single zircon grain suggesting a very localized control on hafnium isotope composition on a grain scale. The non‐equilibrated εHf values as well as a large range of the Hf‐depleted mantle model ages possibly reflect the presence of a heterogeneous population of old zircon. Consequently, the uniform and young 238U/206Pb ages may represent (near‐)complete resetting of the U–Pb geochronometer during the UHP–UHT event at c. 340 Ma through dissolution–reprecipitation process. In contrast to Hf, the oxygen isotope composition of zircon is homogeneous, ranging between 7.8‰ and 9.6‰ VSMOW, reflecting a source containing upper crustal material and homogenization at UHP–UHT conditions. Our study documents that continental crust was subducted to mantle depths at c. 340 Ma during the Variscan orogeny and was subsequently very rapidly exhumed, implying that the sequence of events was faster than can be resolved by the secondary ion mass spectrometry technique.  相似文献   

2.
Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite facies zones of the Higo low‐P/high‐T metamorphic terrane. Here, we report data from an outcrop in the highest grade part of the granulite facies zone, in which diatexite occurs as a 3 m thick layer between 2 m thick layers of stromatic‐structured metatexite within pelitic gneiss. The migmatites and gneiss contain the same peak mineral assemblage of biotite + plagioclase + quartz + garnet + K‐feldspar with retrograde chlorite ± muscovite and some accessory minerals of ilmenite ± rutile ± titanite + apatite + zircon + monazite ± pyrite ± zinc sulphide ± calcite. Calculated metamorphic P–T conditions are 800–900 °C and 9–12 kbar. Zircon in the diatexite forms elongate euhedral crystals with oscillatory zoning, but no core–rim structure. Zircon from the gneiss and metatexite forms euhedral–subhedral grains comprising inherited cores overgrown by thin rims. The overgrowth rims in the metatexite have lower Th/U ratios than zircon in the diatexite and yield a 206Pb/238U age of 116.0 ± 1.6 Ma, which is older than the 110.1 ± 0.6 Ma 206Pb/238U age derived from zircon in the diatexite. Zircon from the diatexite has variable REE contents with convex upward patterns and flat normalized HREE, whereas the overgrowth rims in the metatexite and gneiss have steep HREE‐enriched patterns; however, both types have similar positive Ce and negative Eu anomalies. 176Hf/177Hf ratios in the overgrowth rims from the metatexite are more variable and generally lower than values from zircon in the diatexite. Based on U–Pb ages, trace element and Hf isotope data, the zircon rims in the metatexite are interpreted to have crystallized from a locally derived melt, following partial dissolution of inherited protolith zircon during anatexis, whereas the zircon in the diatexite is interpreted to have crystallized from a melt that included an externally derived component. By integrating zircon and petrographic data for the migmatites and pelitic gneiss, the metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived juvenile component. The Cretaceous high‐temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle‐derived basalts under a volcanic arc along the eastern margin of the Eurasian continent and advection of heat via hybrid silicic melts from the lower crust. Post‐peak crystallization of anatectic melts in a high‐T region at mid‐crustal depths occurred in the interval c. 116–110 Ma, as indicated by the difference in zircon ages from the metatexite and diatexite migmatites.  相似文献   

3.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

4.
Zircons from metamorphosed granites exposed near Qinglongshan have δ18OVSMOW values of −7 to 0‰ in both grain rims and cores. The concordant 238U/206Pb ages of zircon cores are 684 to 754 Ma with rims at 221 Ma. Discordant 238U/206Pb ages range from 242 to 632 Ma. Results demonstrate a Neoproterozoic age for the origin of the Qinglongshan oxygen and hydrogen isotope anomaly. The low δ18O values were imprinted on the rocks by a hydrothermal system charged with meteoric water from a cold climate. Groundwater circulation was driven by heat from cooling granitic magma. The geologic age of the hydrothermal system correlates with that of the Nantuo tillite in the Sinian strata of the South China block, suggesting that Qinglongshan’s cold climate may be a manifestation of Neoproterozoic “snowball Earth.”  相似文献   

5.
Ultrahigh temperature (UHT) metamorphism is traditionally recognized by the development of characteristic mineral associations in Mg–Al-rich metapelitic rocks. However, recognition of UHT metamorphism in non-supracrustal rocks is more difficult. UHT metamorphic conditions are recorded by a migmatite from the North Dabie Terrane (NDT) of the Dabie orogen, east China. The migmatite is composed of intercalated layers of melanosome and K-feldspar-rich leucosome. Zircon grains in the migmatite have a core–rim structure comprising a metamorphic core and an anatectic rim. The metamorphic cores have low U contents (mainly <657 ppm) and low Th/U ratios (<0.2), and are depleted in heavy rare earth element (HREE). The metamorphic domains yield concordant 206Pb/238U ages ranging from 205.1 ± 4.8 Ma to 248.0 ± 4.1 Ma with a weighted mean of 217.7 ± 4.3 Ma (n = 20, MSWD = 4.2). They contain a granulite-facies inclusion assemblage of garnet + clinopyroxene + plagioclase + quartz + rutile. Conventional geobarometry and Ti-in-zircon thermometry constrain PT conditions to approximately 11–12 kbar and 900–950 °C, suggesting UHT metamorphism. The discovery of Triassic UHT metamorphism in the Dabie orogen, which was previously best known for ultrahigh pressure metamorphism, provides new insights into the thermal structure and geodynamics of the orogeny during continental collision. The anatectic rims of zircon grains have relatively high U contents and low Th/U ratios (<0.14), and are enriched in HREE. They yield concordant 206Pb/238U ages of 133.6 ± 1.1 Ma to 156.4 ± 2.2 Ma, indicating that anatexis occurred during post-collisional collapse of the Dabie orogen.  相似文献   

6.
道伦达坝矿床位于大兴安岭南段,是一个铜钨锡矿床,其铜、钨、锡储量均达中型。矿体呈脉状,主要产于二叠系砂板岩中的断裂破碎带中,华力西期黑云母花岗岩中的断裂破碎带中亦赋存有矿体。文章选取2件石英-萤石-白云母-电气石-锡石-黑钨矿阶段的矿石样品对其中的进行了LA-ICP-MS U-Pb定年,获得2件样品的~(207)Pb/~(206)Pb-~(238)U/~(206)Pb谐和年龄分别为(134.7±6.6)Ma(MSWD=1.4)和(136.8±7.4)Ma(MSWD=1.7),~(206)Pb/~(207)Pb-~(238)U/~(207)Pb等时线年龄分别为(132±12)Ma(MSWD=0.76)和(135±13)Ma(MSWD=0.9)。锡石定年结果表明,道伦达坝矿床形成于早白垩世。对矿区外围张家营子岩体中的斑状细粒花岗岩进行了LA-ICP-MS锆石U-Pb测年,获得的~(206)Pb/~(238)U加权平均年龄为(135±1)Ma(MSWD=1.3),该岩体的形成年龄与道伦达坝矿床的成矿年龄在误差范围内一致。本次定年结果表明道伦达坝矿床形成于早白垩世,与同期的花岗质岩浆活动有密切的成因联系,该矿床属于与花岗岩有关的岩浆热液脉型矿床。  相似文献   

7.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

8.
U–Pb sensitive high resolution ion microprobe (SHRIMP) zircon geochronology, combined with REE geochemistry, has been applied in order to gain insight into the complex polymetamorphic history of the (ultra) high pressure [(U)HP] zone of Rhodope. Dating included a paragneiss of Central Rhodope, for which (U)HP conditions have been suggested, an amphibolitized eclogite, as well as a leucosome from a migmatized orthogneiss at the immediate contact to the amphibolitized eclogite, West Rhodope. The youngest detrital zircon cores of the paragneiss yielded ca. 560 Ma. This date indicates a maximum age for sedimentation in this part of Central Rhodope. The concentration of detrital core ages of the paragneiss between 670–560 Ma and around 2 Ga is consistent with a Gondwana provenance of the eroded rocks in this area of Central Rhodope. Metamorphic zircon rims of the same paragneiss yielded a lower intercept 206Pb/238U age of 148.8±2.2 Ma. Variable post-148.8 Ma Pb-loss in the outermost zircon rims of the paragneiss, in combination with previous K–Ar and SHRIMP-data, suggest that this rock of Central Rhodope underwent an additional Upper Eocene (ca. 40 Ma) metamorphic/fluid event. In West Rhodope, the co-magmatic zircon cores of the amphibolitized eclogite yielded a lower intercept 206Pb/238U age of 245.6±3.9 Ma, which is interpreted as the time of crystallization of the gabbroic protolith. The metamorphic zircon rims of the same rock gave a lower intercept 206Pb/238U age of 51.0±1.0 Ma. REE data on the metamorphic rims of the zircons from both the paragneiss of Central Rhodope and the amphibolitized eclogite of West Rhodope show no Eu anomaly in the chondrite-normalized patterns, indicating that they formed at least under HP conditions. Flat or nearly flat HREE profiles of the same zircons are consistent with the growth of garnet at the time of zircon formation. Low Nb and Ta contents of the zircon rims in the amphibolitized eclogite indicate concurrent growth of rutile. Based on the REE characteristics, the 148.8±2.2 Ma age of the garnet–kyanite paragneiss, Central Rhodope and the 51.0±1.0 Ma age of the amphibolitized eclogite, West Rhodope are interpreted to reflect the time close to the (U)HP and HP metamorphic peaks, respectively, with a good approximation. The magmatic zircon cores of the leucosome in the migmatized orthogneiss, West Rhodope, gave a lower intercept 206Pb/238U age of 294.3±2.4 Ma for the crystallization of the granitoid protolith of the orthogneiss. Two oscillatory zircon rims around the Hercynian cores, yielded ages of 39.7±1.2 and 38.1±0.8 Ma (2σ errors), which are interpreted as the time of leucosome formation during migmatization. The zircons in the leucosome do not show the 51 Ma old HP metamorphism identified in the neighboring amphibolitized eclogite, possibly because the two rock types were brought together tectonically after 51 Ma. If one takes into account the two previously determined ages of ca. 73 Ma for (U)HP metamorphism in East Rhodope, as well as the ca. 42 Ma for HP metamorphism in Thermes area, Central Rhodope, four distinct events of (U)HP metamorphism throughout Alpine times can be distinguished: 149, 73, 51 and 42 Ma. Thus, it is envisaged that the Rhodope consists of different terranes, which resulted from multiple Alpine subductions and collisions of micro-continents, rather similar to the presently accepted picture in the Central and Western Alps. It is likely that these microcontinents were rifted off from thinned continental margins of Gondwana, between the African and the European plates before the onset of Alpine convergence.  相似文献   

9.
We report SHRIMP U–Pb age of zircons in four samples of eclogite and one sample of orthogneiss from Sulu ultrahigh-pressure (UHP) zone in Yangkou area, eastern China. UHP rocks are distributed along the Sulu orogenic belt suturing North China Block with South China Block. In Yangkou area, UHP unit is well exposed for about 200 m along Yangkou beach section and consists mainly of blocks or lenses of ultramafic rocks and eclogite together with para- and orthogneiss which are highly sheared partly. Zircon grains examined in this study from eclogite show oscillatory zoning and overgrowth texture in CL images, and most of the grains have high Th/U ratio ranging from 0.8 to 2.1 indicating an igneous origin. The weighted mean 206Pb/238U ages of zircons from the four samples range from 690 to 734 Ma. These ages can be correlated to the magmatic stage of the protoliths. In rare cases, zircon grains possess a narrow rim with very low Th/U ratio (< 0.02). EPMA U–Th-total Pb dating of such rim yields younger ages that range from 240 to 405 Ma marking the metamorphic stage. On the other hand, zircons from the orthogneiss show irregular shape and zoning with inclusion-rich core and inclusion-free rim. These grains of zircon yield U–Pb discordia intercept ages of 226 ± 63 Ma and 714 ± 110 Ma (MSWD 0.78). Bulk of the areas of the rims rim of the zircons demonstrate younger 206Pb/238U ages close to the upper intercept, with low Th/U ratio (< 0.20) indicating their metamorphic origin. In contrast, the cores show older 206Pb/238U ages close to lower intercept and high Th/U ratio of (0.14–5.25) indicating their igneous origin. The upper intercept age is also commonly noted in zircons from eclogite. Our results suggest a bimodal igneous activity along this zone during the Neoproterozoic, probably related to the rifting of the Rodinia supercontinent.  相似文献   

10.
刘福来  刘平华 《岩石学报》2009,25(9):2113-2131
北苏鲁仰口地区出露超高压的变辉长岩.锆石阴极发光图像和其内部矿物包体激光拉曼测试的联合研究结果表明,变辉长岩锆石具有弱发光效应的岩浆韵律环带的核和被改造的强发光效应的边.岩浆韵律环带的核部保存大量而复杂的矿物包体,包括普通辉石(Cpx)+斜方辉石(Opx)+斜长石(P1)+石英(Qtz)+黑云母(Bt)+钛铁矿(Ilm)+磷灰石(Ap);边部保存的矿物包体则相对较少,包括普通辉石(Cpx)+斜方辉石(Opx)+斜长石(Pl)+磷灰石(Ap).尽管岩浆韵律环带核部的稀土元素总合量比被改造的锆石边部明显偏高,但二者稀土元素配分模式具有明显的相似性,主要表现为轻稀土相对亏损,而重稀土明显富集,相应的(La/Yb)N=0.00015~0.00039,并具有明显的负Eu异常(Eu/Eu*=0.20~0.26)、相对明显的正Ce异常(Ce/Ce*=71.5~147.4)和较高的Th/U比值(1.97~2.69).上述特征表明,仰口地区变辉长岩中的锆石均为继承性的岩浆锆石,而没有新生的变质锆石.LA-(MC)-ICP-MS锆石原位U-Pb定年和Lu-Hf同位素分析结果表明,两件锆石样品Y1和Y2的年龄数据所构成的不一致线显示了十分接近的上交点和下交点年龄.其上交点年龄分别为785±15Ma(2σ)和784±12Ma(2σ),应代表原岩的形成时代,表明变辉长岩的原岩与Rodinia超大陆裂解的岩浆事件存在密切的成因关系;而下交点年龄分别为226±24Ma(2σ)和228±26Ma(2σ),与苏鲁其它类型超高压岩石中含柯石英锆石微区记录的变质年龄十分吻合,应代表变辉长岩的超高压变质时代.岩浆结晶锆石的核部具有明显偏高的176Lu/177Hf(0.00044~0.00291)和176Yh/177Hf(0.0165~0.1168)比值,而176Hf/177Hf比值变化于0.281956~0.282048之间,相应的εHf(t)=-8.5~-14.0,tDM2=2.03~2.32Ga,表明仰口地区变辉长岩的原岩起源于古元古代时期的富集地幔或发生部分熔融的下地壳残留体.被改造的岩浆结晶锆石的边部则具有明显偏低的176Lu/177Hf(0.00029~0.00060)和176Yh/177Hf(0.0112~0.0200)比值,而176Hf/177Hf(t)比值变化于0.281953~0.282002之间,相应的εHf(t)=-10.2~-11.9,tDM2=2.12~2.21Ga.与岩浆结晶锆石核部相比,被改造的岩浆锆石边部的176Lu/177Hf、176Yb/177Hf、176Hf/177Hf(t)比值和εHf(t)和tDM2值的变化范围更小,表明中-新三叠纪的超高压变质作用使岩浆结晶锆石边部的Lu-Hf同位素体系发生调整,更趋向于均一化.  相似文献   

11.
A SHRIMP U-Pb study of zircons separated from an ultrahigh-pressure (UHP) granitic gneiss cobble (sample DS12) from the Upper Jurassic Fenghuangtai Formation of the Hefei Basin, north of the Dabie Orogen, has identified three different domains: (1) cores, some of which show straight boundaries and strong oscillatory zoning, with Th/U ratios of 0.12-0.70 and an imprecise upper intercept age of 777 ± 220 Ma (MSWD = 2.4); (2) mantles, variable in shape and cathodoluminescence (CL) intensity and containing many UHP mineral inclusions, including coesite and omphacite, and with Th/U ratios of 0.02-0.26 and a weighted mean 206Pb/238U age of 244 ± 5 Ma (MSWD = 4.7); and (3) rims, which are more homogeneous and luminescent in CL than the mantles and contain fewer UHP mineral inclusions, with Th/U ratios of 0.01-0.05 and a weighted mean 206Pb/238U age of 226 ± 2 Ma (MSWD = 0.65). Monazites from the same sample do not contain coesite and omphacite inclusions, but they do show sector zones and are composed of two contrasting domains. The light domains in backscattered electron (BSE) images have a Th/U ratio of 7.3-18.9 and a weighted mean 206Pb/238U age of 221 ± 2 Ma (MSWD = 0.94). The dark domains in BSE have a Th/U ratio of 2.8-7.2 and have a weighted mean 206Pb/238U age of 218 ± 2 Ma (MSWD = 0.96). Based on these data and a review of the literature, it can be concluded that (1) the protolith of gneiss sample DS12 is a granitoid of Neoproterozoic age; (2) the ages of 244 and 226 Ma for the mantle and rim domains of the zircons are time records of two discrete stages in the UHP evolution of Dabieshan; (3) the ages of 221 and 218 Ma for the light and dark gray domains, respectively, of the monazites record the times of two stages of retrogressive metamorphism during exhumation of the UHP granitic gneiss to a higher crustal level; (4) the exhumation rate of the gneiss is estimated to be >6 km/Ma; and (5) the UHP metamorphic blocks of the Dabie Orogen provided significant detritus to the Hefei Basin in the Jurassic.  相似文献   

12.
In‐situ SIMS analyses of O and U‐Pb isotopes were carried out for zircons from a quartz vein hosted by ultrahigh‐pressure metagranite (UHP) in the Dabie orogen. The results are integrated to decipher the property of unusual U‐rich aqueous fluids and their effects on both metamorphic and magmatic zircons during exhumation of the UHP metagranite. In CL images, most zircon grains show distinct core‐rim structures. Relict cores are bright and exhibit oscillatory or patchy zonation, giving Neoproterozoic upper‐intercept ages of 795 ± 26 Ma. Newly grown rims are dark and exhibit no zoning, yielding Triassic concordant ages of 215 ± 5 Ma. The cores give Th contents of 59 to 463 ppm and U contents of 98 to 558 ppm, with Th/U ratios of 0.263 to 1.423. The rims yield reduced Th contents of 11 to 124 ppm but significantly elevated U contents of 1051 to 3531 ppm, with Th/U ratios of 0.010 to 0.035. Comparison with the cores of magmatic origin, the unusual enrichment in U but depletion in Th in the rims of metamorphic origin are interpreted as zircon growth from Cl‐rich oxidized vein‐forming aqueous fluids that were produced by dehydration reactions of the wallrock during continental exhumation. The cores have variably positive δ18O values with concordant or discordant Neoproterozoic U‐Pb ages, suggesting their solid‐state modification of both O and U‐Pb isotopes through interaction with the fluids. The rims yield negative δ18O values, indicating their growth from the negative δ18O fluids. Taken together, the proposed Cl‐rich oxidized negative‐δ18O vein‐forming aqueous fluids have such an ability to not only cause variable metamorphic recrystallization in the relict magmatic zircons but also produce dramatic fractionation of U over Th in the metamorphic zircons during quartz veining, and potentially impact on the overlain metasomatite in the mantle wedge.  相似文献   

13.
苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限   总被引:5,自引:4,他引:1  
在大型碰撞造山带中,在陆壳物质深俯冲或快速折返早期,在超高压-高压条件下,易熔组分可能发生水致或脱水部分熔融,形成花岗质熔体。在超高压-高压条件下,苏鲁超高压岩石发生过部分熔融作用,形成长英质多晶体包裹体和不同尺度的花岗质岩石, 导致可观的地球化学效应。为确定苏鲁超高压岩石部分熔融的时限,对山东仰口超高压副片麻岩和其中平行片麻理的同构造钾质花岗岩脉进行了SHRIMP锆石U/Pb地质年代学、全岩地球化学和锆石内矿物包裹体的研究。副片麻岩的锆石具有典型的核-幔-边结构。核部锆石为碎屑锆石,206Pb/238U年龄大于282Ma,可能反映了副片麻岩的原岩包含不同成因的物质;幔部和边部的Th/U比都小于0.1,分别给出233±3Ma和214±4Ma的206Pb/238U 年龄,分别对应于超高压变质和角闪岩相退变质年龄。同构造花岗岩脉是富钾过铝质花岗岩(A/CNK=1.2),锆石也具有核-幔-边结构;核部锆石年龄与副片麻岩的核部锆石年龄相当,反映了该花岗岩脉的源区可能是变沉积岩;除幔部锆石的一个点具有206Pb/238U年龄为234.6±3.9Ma之外,其它幔部锆石位于谐和线附近,给出206Pb/238U年龄为220.8±2.9Ma, 该年龄代表着该花岗岩脉的形成年龄。上述数据表明,在仰口地区,超高压岩石的部分熔融作用早于角闪岩相退变质作用。  相似文献   

14.
《地学前缘(英文版)》2020,11(5):1593-1608
The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB) in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly 1.1,except for two samples with 1.09),high contents of SiO_2(74.38-76.84 wt.%) and Al_2 O_3(12.46-14.05 wt.%) and variable CaO/Na_2 O ratios(0.2-0.65) as well as high zircon δ~(18)O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial ~(87)Sr/~(86)Sr ratios(0.6917-0.7101),and less radiogenic εNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negative ε_(Hf)(t) values in the range of-3.7 to-9.9 with mean T_(DM2)(Nd) and T_(DM2)(Hf) values of 1.57 Ga and 1.55 Ga.They show initial ~(207)Pb/~(204)Pb ranging from15.69 to 15.71 and ~(206)Pb/~(204)Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lower δ~(18)O values and higher ε_(Hf)(t) values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/~(238)U ages of 83.7 ± 0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and ~(208)Pb/~(232)Th ages of 83.2 ± 0.5 Ma,83.8 ± 0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/~(238)U ages of 83.5±0.4 Ma(MSWD=0.6),83.5 ± 0.4 Ma(MSWD=0.5),83.6 ±0.4 Ma(MSWD=0.6) and 83.2 ±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous.  相似文献   

15.
Extremely U-depleted (<1 ppm) zircons from H8 banded ores in the East Orebody of the Bayan Obo REE–Nb–Fe deposit are presented, with mineral compositions, textures, 232Th–208Pb SHRIMP ages and petrological context. Cores of East Orebody zircon contain up to 7 wt% HfO2 and are zoned, depicting bipyramidal crystal forms. A distinct generation of patchy, epitaxial rim zircon, similarly depleted in U, is intergrown with rare earth ore minerals (bastnäsite, parisite, monazite). Overprinting aegirine textures indicate paragenetically late, reactive Na-rich fluids. Chondrite-normalized REE patterns without Eu anomalies match closely with those from the Mud Tank and Kovdor carbonatitic zircons. Increased HREE in rims ((Lu/Gd)N 43–112) relative to cores ((Lu/Gd)N 6–7.5) and the localized presence of xenotime are attributable to reactive, mineralizing fluid compositions enriched in Y, REE and P. Cathodoluminescence further reveals HREE fractionation in rims, evidenced by a narrow-band Er3+ emission at 405 nm. The extreme depletion of U in core and rim zircon is characteristic for this mineral deposit and is indicative of a persistent common source. U depletion is also a characteristic for zircons from carbonatitic or kimberlitic systems. 232Th–208Pb (SHRIMP II) geochronological data reveal the age of zircon cores as 1,325 ± 60 Ma and a rim-alteration event as 455.6 ± 28.27 Ma. The combined findings are consistent with a protolithic igneous origin for zircon cores, from a period of intrusive, alkaline–carbonatitic magmatism. Fluid processes responsible for the REE–Nb mineralizations affected zircon rim growth and degradation during the widely reported Caledonian events, providing a new example in a localized context of HREE enrichment processes.  相似文献   

16.
对伊通地区的放牛沟火山岩,以及后期侵入该火山岩的后庙岭花岗质侵入体进行了LA-ICP-MS锆石U-Pb年代学研究。3个样品中的锆石均呈自形-半自形晶,CL图像显示出明显的岩浆振荡生长环带,结合大多数锆石具有较高的Th/U比值(0.23~3.55),暗示了它们的岩浆成因。放牛沟火山岩由变玄武安山岩和变安山岩组成,其中变安山岩样品中锆石22个测点的~(206)Pb/~(238)U年龄加权平均值分为3组:420±4 Ma,402±3 Ma及280±1 Ma,其中280±1 Ma代表了安山岩的形成年龄;变玄武安山岩样品中锆石30个测点的~(206)Pb/~(238)U年龄加权平均值分为两组:401±1 Ma及279±1 Ma,后者代表了玄武安山岩的形成年龄;后庙岭花岗质侵入体中锆石18个测点的~(206)Pb/~(238)U年龄加权平均值为256±2 Ma。上述锆石U-Pb定年结果表明,放牛沟火山岩形成于早二叠世,而非前人认为的早古生代。对后庙岭侵入体的定年结果,进一步暗示放牛沟多金属硫铁矿床的成矿时代为二叠纪。  相似文献   

17.
《Chemical Geology》2007,236(1-2):27-41
The Ogcheon metamorphic belt consists primarily of metasedimentary and metavolcanic rocks that have experienced polyphase tectonometamorphism since the Neoproterozoic. Peak metamorphism reaching up to lower-amphibolite facies produced ubiquitous garnet porphyroblasts in pelitic and mafic schists. To determine the timing of their formation, step-leaching experiments were undertaken for five garnet fractions separated from pelitic and quartz-hornblende-garnet schists. The U–Pb ages from three samples are identical within 2σ errors, ranging from 291 ± 41 Ma to 276 ± 29 Ma. The quasi-linearity of leachates in 238U–206Pb and 208Pb–206Pb diagrams suggests that U and Pb are released from a single mineral phase and that minor chemical fractionation between U and Pb may have occurred during the leaching experiment. Deviations of residues and bulk garnet fractions from the linear trend are attributed to partial dissolution of refractory inclusions of detrital zircon. Th/U ratios of leachates are in the range of 3.4–12, much higher than those of pure garnet, and suggest the contribution of allanite. Negative relationships in the Sm–Nd isochron diagram and similar 147Sm/144Nd ratios between whole rock and garnet corroborate the influence of light rare earth element (LREE)-rich allanite on the Sm–Nd isotopic system. Simple mass-balance calculations indicate that only a trace amount (0.35 modal%) of allanite inclusions should govern the U–Th–Pb systematics of garnet. Petrographic evidence together with the consistency in U–Pb ages suggests that allanite is a product of prograde metamorphism. Thus, peak metamorphism responsible for the growth of allanite-bearing garnet porphyroblasts in the Ogcheon metamorphic belt is best estimated to be Early Permian.  相似文献   

18.
Coesite‐bearing eclogites from >100 km2 in the southern Dulan area, North Qaidam Mountains (NQM) of western China, contain zircon that records protolith crystallization and ultra high pressure (UHP) metamorphism. Sensitive High‐Resolution Ion Microprobe (Mass Spectrometer) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry U–Pb analyses from cathodoluminescence (CL)‐dark zircon cores in a coesite‐bearing eclogite yield an upper intercept age of 838 ± 50 Ma, and oscillatory zoned cores in a kyanite‐bearing eclogite gave a weighted mean 206Pb/238U age of 832 ± 20 Ma. These zircon cores yield steep heavy rare earth element (HREE) slopes and negative Eu anomalies that suggest a magmatic origin. Thus, c. 835 Ma is interpreted as the eclogite protolith age. Unzoned CL‐grey or ‐bright zircon and zircon rims from four samples yield weighted mean ages of 430 ± 4, 438 ± 2, 446 ± 10 and 446 ± 3 Ma, flat HREE patterns without Eu anomalies, and contain inclusions of garnet, omphacite, rutile, phengite and rare coesite. These ages are interpreted to record 16 ± 5 Myr of UHP metamorphism. These new UHP ages overlap the age range of both eclogite and paragneiss from the northern Dulan area, suggesting that all UHP rock types in the Dulan area belong to the same tectonic unit. Our results are consistent with slow continental subduction, but do not match oceanic subduction and diapiric exhumation UHP model predictions. These new data suggest that, similar to eclogites in other HP/UHP units of the NQM and South Altyn Tagh, protoliths of the eclogites in the Dulan area formed in a continental setting during the Neoproterozoic, and then subducted to mantle depth together with continental materials during the Early Palaeozoic.  相似文献   

19.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

20.
In this paper,we report an integrated study of U-Pb age and Hf isotope compositions of zircons from biotite plagioclase gneiss at Lianghe in western Yunnan.The zircons preserved inherited core and rim texture.Igneous zircon grains and rims yielded a weighted mean ~(206)Pb/~(238)U age of 120.4±1.7 Ma,theirε_(Hf)(120 Ma)values were mainly negative ranging from-13.9 to-10.7,with Hf model ages between 1.9 Ga and 2.0 Ga,some zircons had positiveε_(Hf)(120 Ma)values ranging from 0.2 to 2.1.The inherited cores ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号