首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《国际泥沙研究》2016,(3):271-278
In order to assess the dynamics of rivers, a reliable characterization of bedload transport particularly during unsteady flow regimes is required. In contrast to highly energetic cases in hillslope areas, we aim to answer the question whether the usage of acoustic measurements can improve the characterization of bedload in small rivers draining low land mountains with comparatively low water discharge and bedload. In addition to the investigation of natural flood events, controlled floods were generated by releasing water from a reservoir into a small gravel-bed stream. The controlled releases allow for an evaluation of bedload solely from channel storage or bank erosion. For acoustical in-situ characterization of bedload transport, hydrophones were mounted onto the bottom side of steel plates, thus recording the impacts of sediments via the acoustic vibrations on the surface of the plates while at the same time minimizing the disturbing noise resulting from water turbulence. Corresponding bedload traps are removable boxes with open lids fixed in the riverbed so that bedload material registered by the hydrophone is trapped. The acoustic signals correlate well with the quantity of the transported material. During summer flood events the highest transport rates occur at the beginning of the rising limb fea-turing clockwise hysteresis. This is due to the rising transport energy of the flow and the presence of loose, unconsolidated material. During typical winter flood events bedload shows anticlockwise loops. The intensification of bedload conveyance after the runoff peak can be explained by a decreasing stability of the bed material from the beginning to the end of a transport event. Anticlockwise behavior also results from a combination of bedload exhaustion in the vicinity of the monitoring station with a delayed arrival of new material from distal sources later in the hydrograph.  相似文献   

2.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

3.
1 INTRODUCTION Protection of bridge piers against local scour is of major importance to bridge maintenance. The safety of bridges is seriously threatened by the river flood during typhoons or thunderstorms. In Taiwan typhoon’s floods are often so strong in possession of high energy to transport a large amount of bed sediment in river. The average velocity in a flood river can go typically over 3 m/s even up to 5 m/s, several times of the regular flow speed. The peak discharge of flood i…  相似文献   

4.
Numerical modeling of free-surface flow over a mobile bed with predominantly bedload sediment transport can be done by solving the shallow water and Exner equations using coupled and splitting approaches.The coupled method uses a coupling of the governing equations at the same time step leading to a non-conservative solution.The splitting method solves the Exner and the shallow water equations in a separate manner,and is only capable of modeling weak free-surface and bedload interactions.In the current study,an extended version of a Godunov-type wave propagation algorithm is presented for modeling of morphodynamic systems using both coupled and splitting approaches.In the introduced coupled method the entire morphodynamic system is solved in the form of a conservation law.For the splitting technique,a new wave Riemann decomposition is defined which enables the scheme to be utilized for mild and strong interactions.To consider the bedload sediment discharge within the Exner equation,the Smart and Meyer-Peter&Müller formulae are used.It was found that the coupled solution gives accurate predictions for all investigated flow regimes including propagation over a dry-state using a Courant-Friedrichs-Lewy(CFL)number equal to 0.6.Furthermore,the splitting method was able to model all flow regimes with a lower CFL number of 0.3.  相似文献   

5.
Wind-blown sand is one of the key factors affecting the evolution of sediment transport,erosion,and deposition in rivers crossing desert areas.However,the differences and complex variations in the spatial and temporal distribution of the underlying surface conditions are seldom considered in research on the river inflow of wind-blown sand over a long time period.The Yellow River contains a large amount of sediment.The Ningxia-Inner Mongolia reach of the Yellow River was selected as the research ...  相似文献   

6.
1. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. Floods at Hyperconcentrationso f sediment (hereinafter simply referred to as hyperconcentrated flood) frequently occurring in the main river and its tributaries possess different characteristics of sedimenttransport. Sometimes they cause severe deposition whereas at other times they are capable of carrying substantial amount of sediment over long distances. The study on the lawof sediment transport is of significance to …  相似文献   

7.
The movement of bedload in subcritical flow produces additional roughness as compared to flow in a rigid bed. The magnitude of this bed load roughness is proportional to the thickness of the sediment layer moving along the bed, the particle size and the sediment concentration. In a supercritical flow, however, further resistance is expected due to the momentum absorption by the high flow velocity. In this study the effect of sediment movement on the flow resistance in supercritical flow was experimentally investigated. The experiments included flows over smooth and rough beds carrying sediment of mean diameters D50=2.80, 5.42 and 7.06 mm in a rigid rectangular channel. The results show that the sediment transport may increase the friction factor by up to 90% and 60% in smooth and rough beds, respectively. Bedload extracts its momentum from the flow, which causes a reduction of near bed flow velocity and steeper velocity gradient near the bed resulting in an increase in shear velocity as well as in roughness height. The increase in friction factor is directly related to bedload concentration and particle size.  相似文献   

8.
Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean.Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler(ADCP) to monitor bed shear stress,applying a prescribed boundary layer model,previously used for discharge estimation.The model parameters include the local roughness length and a dip correction factor to account for sidewall effects.Both these parameters depend on river stage and on the position in the cross-section, and were estimated from shipborne ADCP data.We applied the calibrated boundary layer model to obtain bed shear stress estimates over the measuring range of the HADCP.To validate the results,co-located coupled ADCPs were used to infer bed shear stress,both from Reynolds stress profiles and from mean velocity profiles. From HADCP data collected over a period of 1.5 years,a time series of width profiles of bed shear stress was obtained for a tidal reach of the Mahakam River,East Kalimantan,Indonesia.A smaller dataset covering 25 hours was used for comparison with results from the coupled ADCPs.The bed shear stress estimates derived from Reynolds stress profiles appeared to be strongly affected by local effects causing upflow and downflow,which are not included in the boundary layer model used to derive bed shear stress with the horizontal ADCP.Bed shear stresses from the coupled ADCP are representative of a much more localized flow,while those derived with the horizontal ADCP resemble the net effect of the flow over larger scales.Bed shear stresses obtained from mean velocity profiles from the coupled ADCPs show a good agreement between the two methods,and highlight the robustness of the method to uncertainty in the estimates of the roughness length.  相似文献   

9.
Withdrawal of water from a river into a canal involves the construction of a barrage or a dam across the river depending on whether the river is perennial or not. The design of the reservoir upstream of the dam and of the canal requires consideration of the sediment load carried by the river in case the river is sediment-laden. The basic equations concerning morphological changes in such rivers are discussed with particular reference to computation of reservoir sedimentation. The hydraulics of lined canals carrying wash load is examined from the point of view of limiting transport capacity and changes in frictional resistance. Lastly, the methods of design of sediment extraction devices like settling basins and vortex chambers are presented.  相似文献   

10.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

11.
The paper presents the 3D finite element simulation of tidal flow and sediment transport in the estuarine region of the Haihe river. The proposed model adopts sigma-transformation of the hydrodynamic and sediment transport equations. The hydrodynamic and sediment transport models are verified in case of a simple test problem for which analytical solutions are available. Finally the models are applied to muddy Haihe river estuary of North China and it is claimed that hydrodynamic and sediment…  相似文献   

12.
Numerous time-consuming equations, based on the relationship between the reliability and representativeness of the data utilized in defining variables and constants, require complex parameters to estimate bedload transport. In this study the easily accessible data including flow discharge, water depth, water surface slope, and surface grain diameter (ds0) from small rivers in Malaysia were used to estimate bedload transport. Genetic programming (GP) and artificial neural network (ANN) models are applied as complementary tools to estimate bed load transport based on a balance between simplicity and accuracy in small rivers. The developed models demonstrate higher performance with an overall accuracy of 97% and 93% for ANN and GP, respectively compared with other traditional methods and empirical equations.  相似文献   

13.
APPLICABILITY OF SEDIMENT TRANSPORT FORMULAS   总被引:3,自引:0,他引:3  
1 INTRODUCTIONThe selection of aPPropriate sediment transport fOrmulas under different flow and sedfornt conditions isimPoftant tO the sedimen tusPort and river morphologic stUdies of a river. There are numrousWlas published in professional joumals and summarized in sediment transPort texthooks. Mosttextbooks shy away from direct comPallsons of the accuracies of transPort formulas. ComPllted resultsbased on differnt transport formulas may differ significanly from each other and from …  相似文献   

14.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

15.
River islands are vital geomorphic units in alluvial rivers, and the variation of their morphology and position plays a significant role in regulating flow-sediment transport and channel stability. Based on the theories of minimum energy dissipation theory of fluid movement and river morphodynamics, this study uses the river islands in anabranching channels to analyze the relationship between the shape coefficient of river island and the flow-sediment dynamics under stable equilibrium conditions...  相似文献   

16.
Numerous estuaries of the world have been strongly modified by human activities.These interferences can make great adjustments of not only sediment transport processes,but also the collective behavior of the estuary.This paper provides a typical case of a heavily modified coastal plain estuary of Sheyang on the China coast,where a sluice barrage was built in 1956 to stop the intrusions of storm surges and saline water.Four sets of instrumented tripods were simultaneously deployed along a cross-shore transect to continuously observe near-bed flow currents and sediment transport.The in-situ surveys lasted over a spring and neap tide cycle when a strong wind event occurred in the neap tide.Comparisons of flows and sediment transport between tide-dominated and wind-dominated conditions demonstrated the important role of episodic wind events in flows and sediment transport.The wind-induced currents,bottom stresses,and sediment transport rates were significantly greater when wind was present than corresponding quantities induced by the tides.The long-shore sediment transport induced by winds exceeds the cross-shore component,especially near the river mouth bar.These results indicate the noticeable importance of wave-dominated coastal processes in shaping topographic features.A regime shift of estuarine evolution under highly intense human forcing occurs from fluvial to marine processes.This finding suggests that the management strategy of the estuarine system should focus on the restoration of estuarine processes,rather than the present focus on inhibition of marine dynamics.  相似文献   

17.
Wind-blown sand is one of the key factors affecting the evolution of sediment transport,erosion,and deposition in rivers crossing desert areas.However,the differences and complex variations in the spatial and temporal distribution of the underlying surface conditions are seldom considered in research on the river inflow of wind-blown sand over a long time period.The Yellow River contains a large amount of sediment.The NingxiaeInner Mongolia reach of the Yellow River was selected as the research area of the current study.The reach flows out of Heishanxia and then flows through the Tengger,Hedong,Ulan Buh,and Kubuqi Deserts.In the current study,the wind speed,vegetation coverage,and sand matter on the river basin's surface were analyzed from the perspectives of the river basin surface and riverbank line.The vegetation coverage of the river basin's surface was calculated using the normalized difference vegetation index.Based on the types of sand matter,vegetation coverage,and other underlying surface conditions,the loose particle sediment transport efficiency was determined,the Lettau and Lettau formula for the sediment transport rate was modified,a surface wind-erosion sand flux model was established,and the amount of wind-blown sand transported into the NingxiaeInner Mongolia reach was calculated.The results show that,from 1981 to 2014,the annual average amount of wind-blown sand transported into the main stream and tributaries of the NingxiaeInner Mongolia reach of the Yellow River were 7,310,000 and 13,190,000 t,respectively.The ShizuishaneBayangole reach received 51%of the total wind-blown sand that transported into the main stream,while the tributaries in the Shidakongdui area were the most important source wind-blown sand,providing 74%of the total windblown sand inflow from the tributaries.In recent years,the amount of sand transported into the river of the mainstream and tributaries of the NingxiaeInner Mongolia reach of the Yellow River has significantly decreased from 1981 to 2002,particularly in 1993e2002,which is mainly the result of the weakening wind speed,increasing vegetation coverage,and embankment construction.More specifically,environmental protection policies led by the government,such as“returning farmland to forest”,have played an important and positive role.Therefore,when regulating the water and sediment in the NingxiaeInner Mongolia reach of the Yellow River,the issue of wind-blown sand deposition into the river should be fully considered in water and sediment regulation.  相似文献   

18.
An integrated suspended sediment transport monitoring and analysis concept   总被引:1,自引:1,他引:0  
A new integrated suspended sediment monitoring strategy applying direct and indirect technologies is presented.Optical sensors continuously record the turbidity at one point in the channel cross section close to the river bank and are calibrated by water samples taken close to the sensor.Additionally measurements are performed to establish the distribution of suspended sediment in a cross section(bottle samples combined with acoustic devices).Using correction factors(probe and cross-sectional factor) these monitoring methods are combined and it is,thus,possible to fully document the temporal and spatial variability of the suspended sediment transport and to estimate the suspended sediment load for certain time periods.This monitoring strategy was implemented at various measurement sites in Austria as well as at the Hainburg Road Bridge site on the Danube River.It has already been successfully applied for three years at this measurement site and suspended sediment loads during high discharges up to a 15 year flood event have been monitored.To evaluate the new monitoring methods the results were compared with load estimation methods found in the literature including averaging and ratio estimators as well as rating curves.The results prove that with the new methodology,the temporal variability of the suspended sediment transport can be detected more accurately compared with the other methods.They also demonstrate that the additional consideration of the spatial distribution of the suspended sediment concentration in the cross section is crucial as the mean concentration in the cross section can significantly exceed the concentration near the banks,especially at large rivers like the Danube River.  相似文献   

19.
A MATHEMATICAL MODEL FOR RESERVOIR SEDIMENTATION AND FLUVIAL PROCESSES   总被引:3,自引:1,他引:3  
I. INTRODUCTIONAt present moot sediment transport models applied in engineering practice are based on equilibriumsediment transport approach, i. e. sediment--carrying Capacity is used to replace the actual sediment concentration (ref. 1 -- 9). However, the sediment--carrying capacity, in general, is not equal to sedimentconcentration, they may differ a lot especially for the case of reservoir sedimentation process and/orthe scouring process of river channel in the downstream of a reservoi…  相似文献   

20.
1 INTRODUCTION River erosion is a complex phenomenon. The rate of bank retreat is determined by flow, bed topography, sediment transport, bank properties, and water quality. Prediction of future river planform changes and the knowledge of river erosion and river meandering are required for land use planning in alluvial river valleys and determining locations for bridges and hydraulic structures. The control of riverbank erosion requires prediction of flow and bed features in a meanderin…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号