首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Light transmission data collected from June to July 1987 and from February to March 1997 by the R/V Kexue 1 in the East China Sea were used to analyze its distribution characteristics and its relation to the sediment transport in this sea. Some results obtained were: (1) The Taiwan Warm Current flowing northwards seemed to be a barrier preventing suspended matter discharged from the Changjiang River Estuary from continuously moving southeastward and causing the suspended matter to flow along a path near 123°30′E in summer and 123°00′E in winter. (2) Suspended matter in the area adjacent to the Changjiang River Estuary could not be transported southward along the coast in summer due to opposing offshore currents including the Taiwan Warm Current flowing northward and the Changjiang Diluted Water turning northeastward. (3) The thermocline and temperature front bar suspended matter from crossing through.  相似文献   

2.
INTRODUCTIONAnimportantachievementofoceanographysincethe 1960swasthediscoveryofmesoscaleed dieswithspatialscaleofhundredsofmeters,andtimescaleofhours;andaverageflowvelocityofabout 10cm s.Theenormousenergyofthemesoscaleeddyiscomparabletothatofacycloneoran ticycloneintheatmosphere .Themesoscaleeddyisoneoftheimportantfactorsthatdecidethechangeoftheocean .Intherecentdecades,ChineseandforeignscientistshavedonelotsofworkontheEastChinaSeasmesoscaleeddies,theformationmechanismofwhicharethefocuso…  相似文献   

3.
Two cruises were conducted in January and July 1986 in the Changjiang (Yangtse River) Estuary and its adjacent East China Sea (30°45′ -32°00′N,121°00′-124°00′E). Direct epifluorescence counts of planktonic bacteria and determinations of ATP concentrations were made. Subsamples were taken for measurement of oxygen consumption rates and chlorophyll concentrations.Bacteria and ATP concentrations were higher in summer than in winter, highest in the river and the river mouth, and gradually lower offshore. The bacteria number was correlated positively with suspended matter, nitrates and oxygen consumption rates, and negatively with salinity.In winter bacteria were the main contributors of ATP and the main consumers of dissolved oxygen in the whole studied area. In summer two maxima of ATP were found along the salinity gradient. The first one which coincided with the peak of turbidity near the river mouth was attributed to bacte -ria, and the second which occurred in the waters with a salinity range be  相似文献   

4.
With the use of historical data from their 1982-1985 special observation at the source area of the Taiwan Warm Current the authors conducted studies to clarify the temperature and salinity characteristics, variability, and origin of the Taiwan warm Current Water, and its influence on the expanding direction of the Changjiang Diluted Water.The main results are given below.(1)The Taiwan Warm Current Water can be divided into the "Surface Water of the Taiwan Warm Current" formed due to the mixing of the Kuroshio Surface Water flowing northward along the east coast of Taiwan with the Taiwan Strait Water, and the "Deep Water of the Taiwan Warm Current" originated from Kuroshio Subsurface Water to the east of Taiwan. It is characterized by stable low temperature and stable high salinity in summer. The maximum seasonal variation and maximum secular variation of temperature and salinity are 1.87℃, 0.26‰ and 2.96℃, 0.37‰, respectively.(2)The variation in strength of the Taiwan Warm Current is the main influe  相似文献   

5.
Analysis using historical data on the phosphate sources in Changjiang (Yangtze River) estuary show that phosphate was supplied equally from the east, south, west and north of the estuary. These sources include the Changjiang River, the Taiwan Warm Current (TWC), a cyclone-type eddy, and the 32°N Upwelling, supplying different phosphates in different times, ways and intensities. The magnitude of their supplying phosphate concentration was related with the size in the order of the Changjiang River 〈 the TWC 〈 the 32°N Upwelling 〈 the cyclone-type eddy, and the duration of the supplying was: the Changjiang River 〉 the TWC 〉 the cyclone-type eddy 〉 the 32°N Upwelling. The four sources supplied a great deal of phosphate so that the phosphate concentration in the estuary was kept above 0.2 pmol/L in previous years, satisfying the phytoplankton growth. The horizontal and vertical distribution of the phosphate concentration showed that near shallow marine areas at 122°E/31°N, the TWC in low nutrient concentration became an upwelling through sea bottom and brought up nutrients from sea bottom to marine surface. In addition, horizontal distribution of phosphate concentration was consistent with that of algae: Rhizosolenia robusta, Rhizosolenia calcaravis and Skeletonema, which showed that no matter during high water or low water of Changjiang River, these species brought by the TWC became predominant species. Therefore, the authors believe that the TWC flowed from south to north along the coast and played a role in deflecting the Changjiang River flow from the southern side.  相似文献   

6.
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.  相似文献   

7.
Warming trend in northern East China Sea in recent four decades   总被引:2,自引:0,他引:2  
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957–1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46°C higher during the period of 1977-19...  相似文献   

8.
With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended paniculate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.  相似文献   

9.
lmooUcrI0NSuspendedrnatter(SM)wasanimPortantsubjeCtofstudyincomPrehensiveoasnographicsurveyinChinaintheendofthel950s.Inthel97ds,somesdentistSpeonjo,l974,Yatomoto,l979,EInery,l978)studndextenSiveynoncombustiblematterandgrainsizedistributionsinSManditSreintionshiptoupwelling.Inthel980s,TotaIsuspendedmatternyM)distributionintheEastChinaSea(Ees)wasinvestisatalduringtheChinaisjointstudyonsedhedynaAnesthere.YangZuosheng(l992)distaltherelationbeweenthemacrostrUctureofSMtIansportanddistrib…  相似文献   

10.
This research on the influence of sediment resuspension on the flux of materials in the margin of the East China Sea showed that the sediment resuspension rates, was 47.40%–79.18% in the surface layers, and 72.75%–96.96% in the bottom layers. The research confirmed that the Changjiang River runoff and the eddy area upwelling flow near 125°E were two important factors affecting the sediment resuspension in summer; the transformation of DOC to POC through the flocculation in the transitional region (123°–124°E) was also confirmed by comparison of the resuspension rate. The sediment resuspension was shown to be influenced by the seasonal factor, especially in the surface layer. Contribution No. 4017 from the Institute of Oceanology, Chinese Academy of Sciences. Project 49636210 supported by NSFC.  相似文献   

11.
ImODUrmNJ0GFS(JointGlobaldrinFLuxStudy:l99()-2OO()isaworldwidenawhprogramfocusingontheoasns'buharolewhentheC0,prmtageintheairincreasesandtheatmOspheretemPeraturebo.ThefluxofsuspendedrnateriaIs(SM)intheEastChinaScaisboortanttotheworld'srnatterchaltfon,astheChangiiangRiver,thelargestriverinAsia,dischargesbillionsoftOnsoftheidWhterintoit.ManystudAshavebocondtalonSMmovementncarChina'scoastalseas.Yang(l983)studiedthefine%rainedsededtSfromtheChangiiangandHuangheRiversWhileQin(l983)fo…  相似文献   

12.
Data obtained from a comprehensive multidisciplinary oceanographic survey in the central and northern parts of the Taiwan Strait, 24°20′-26°00′N, 118°45°-121°00′E by the Fujian Institute of Oceanology during the period May, 1983 through May, 1984, showed that the distributions of dissolved oxygen (DO), nitrate, dissolved inorganic phosphate and silicate concentrations here had obvious areal and seasonal characteristics that were mainly influenced by the seasonal circulation ofthree major water systems in the Taiwan Strait-- the Taiwan Strait Warm Water (TSWW), theZhejiang-Fujian Coastal Water (ZFCW), and the Northeastern Strait Warm Water (NESWW).  相似文献   

13.
The circulations off the Changjiang mouth in May and November were simulatedby a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjlang discharge is much larger in May than in November, and the wind is westward in May, and southward in November offthe Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoff near the mouth and the TWC off the mouth, and the runoff and TWC are greater in May than in November.  相似文献   

14.
Since the last rising of sea level, two branches of the Kuroshio, the Huanghai (Yellow Sea) coastal current (HCC; mainly cold water mass) and the Changjiang River outflow have controlled the modern dynamic deposition in the East China Sea. There are three depositing areas on the sea-bed under the above currents: a relict sand area un der the Taiwan Warm Current and the Huanghai Warm Current at the south-eastern area, the about 60 km2 round mud bank under the Huanghai Coastal Current at the northern area and the large subaqueous delta of mainly fine sand and silt under the Changjiang discharge flow in its estuary and the large narrow mud bank under the Zhejiang-Fujian Coastal Current, another round mud bank under the Changjiang discharge flow off Hangzhou Bay. The relict sand area has a coarsesand block under the Taiwan Warm Current bypassing Taiwan at the northern part of the island. The two round mud banks were formed in relatively static states by an anticlockwise converging cyclonic eddy. The coarsesand block was formed by a clockwise diverging cyclonic eddy. This new dynamic deposition theory can be used to explain not only the dynamic deposition process of clay, but also the patchy distribution of sediments on the shelves of the world ocean s.  相似文献   

15.
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises. There was something special in the observations for the Yellow Sea Warm Current (YSWC), the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year. The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind. It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter. Resulting from the reduced Changjiang River discharge, the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons. The other water masses seemed normal without noticeable anomalies in 2011. The Yellow Sea Coastal Current (YSCC) water, driven by the northerly wind, flowed southeastward as a whole except for its northeastward surface layer in summer. The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement. The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.  相似文献   

16.
Data taken in the two large-scale ocean investigations in China in winter 1959 and 1982 are used to analyze the residual current off the Changjiang (Yangtze) River mouth in this paper. The current in wintertime off the river mouth consist of the Changjiang runoff, wind-driven current, coastal current, density-driven current and Taiwan Warm Current (TWC). The TWC occurs in wintertime off the mouth. The surface TWC reaches only to the east side of Dinghai, then turns southeastward. The bottom TWC can flow to the area off the Changjiang mouth along west slop of the submerged river valley (SRV) and to the area off the Subei coast, The simulated currents by 3D model are basically consistent with the observed currents, although the model was run with climatological forces and the observations was done in episodic time manner.  相似文献   

17.
The Taiwan Warm Current Deep Water (or the East China Sea Upper Layer Water, or the East China Sea Subsurface Water) lying in the deep and bottom layers off the coast of Fujian-Zhejiang is one of the main watermasses in the continental shelf region of the western East China Sea. The hydrographical conditions and the fishery productions in this region are affected remarkably by the decline and growth of the Taiwan Warm Current Deep Water. Although the temperature, salinity and origin of the Taiwan Warm Current Deep Water have been investigated[3] by oceanographers the world over, there are up to now few papers published on its characteristics of ariations (seasonal and multiyear variations). Understanding of this problem will be helpful to further characterize this watermass. For this reason, in this paper, section 28°N representing the middle Taiwan Warm Current Deep Water and section 30°N representing the northern Taiwan Warm Current Deep Water are taken for examples, and the method of similar coefficient is used for analysis of this problem. Contribution No. 861 from the Institute of Oceanology, Academia Sinica. This paper was published in Chinese inOceanologia et Limnologia, Sinica 14 (4): 357–366.  相似文献   

18.
Dissolved nutrients (NO 3 , PO4 3−, SiO3 2−) and oxygen, chlorophyll- a, pH, and Eh were measured on board during a cruise in August 1988 in the Changjiang Estuary region. Heavy metals, organic matter and carbonate contents were analyzed in laboratory. The results show that geochemical processes in the Changjiang Estuary have dual filtration effect: on the one hand geochemical filtration effect, reflected by ferromanganese oxide flocculation and sedimentation, occurs near the turbidity maximum, and leads to enrichment of heavy metals in suspended matter and sediments; on the other hand biogeochemical filtration, reflected by nutrients consumption, organic matter and carbonate sedimentation and enrichment of trace elements in suspended matter, occurs outside the plume water front. The biogeochemical filtration affects the environmental conditions; the dissolved oxygen and pH increase, in surface water and decrease in bottom water. The biogeochemical filtration effect outside the plume front is more important than the geochemical filtration effect near the turbidity maximum.  相似文献   

19.
Distribution of suspended matter in seawater in the Southern Yellow Sea is investigated in five regions: 1) the Northern Jiangsu bank, the highest TSM (total suspended matter) content region; 2) the high TSM content region off the Changjiang River mouth; 3) the high TSM content region off the Chengshan Cape; 4) the low TSM region off Haizhou Bay; 5) the central part of the Southern Yellow Sea, a low TSM content region. The vertical distribution of TSM is mainly characterized by a spring layer of suspended matter, written as “suspended-cline” whose genesis is related to storms in winter. In this paper, non-combustible components and grain sizes in suspended matter, relationship between suspended matter and bottom sediments, and salinity in seawater are described. Investigation result shows that, in this area, suspended matter comes mainly from resuspended bottom sediment and secondarily from present discharge loads from rivers and biogenic materials. Discharged sediments from the Huanghe River move around the Chengshan Cape and affect the northwestern region of this area. Sediments from the Changjiang River affect only the southern part and have little or no direct influence on the central deep region. Wave is the main factor affecting distribution of suspended matter. Water depth controls the critical depth acted on by waves. The cold water mass in the central region limits horizontal and vertical dispersions of terrigenous materials. Suspended matter here has the transitional properties of the epicontinental sea. Its concentration and composition are different from those of a semi-closed sea (such as the Bohai Sea) and those of the East China Sea outer continental shelf or those near oceanic areas.  相似文献   

20.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号